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Zusammenfassung

In interferometrischen Gravitationswellendetektoren ist das thermische Rauschen eine der
limitierenden Rauschquellen. Effekte, die auf thermischem Rauschen beruhen, dominieren
im Frequenzbereich zwischen einigen zehn Hz und einige hundert Hz.

In dieser Arbeit werden zwei Experimente beschrieben, mit denen wir diese Rauschquelle
untersuchen.

Im ersten Experiment wurde das
”
nicht-resonante“ thermische Pendelrauschen unter-

sucht, d.h. die zufällige Pendelbewegung, die durch die Temperatur getrieben wird. Schon
Saulson [1] zeigte Anfang der 90er Jahre, dass das Spektrum dieses Rauschens stark von
der Art der mechanischen Dissipation abhängt, d.h. dass es sehr wichtig ist, ob viskose
oder strukturelle Dämpfung überwiegt. In unseren Untersuchungen wurde das Rauschen
stark durch seismische Kopplungen dominiert. Durch Modifikationen der Pendelaufhän-
gung konnte die Empfindlichkeit verbessert werden. Es stellte sich heraus, dass das Holz-
ersche Verfahren für die numerische Analyse der mechanischen Kopplungen im Prinzip
anwendbar ist. Die bekannte numerische Instabilität des Verfahrens konnte beseitigt
werden.

Ziel des zweiten beschriebenen Experimentes war die Vermessung des internen ther-
mischen Rauschens in einer optischen Beschichtung. Zusätzlich zu dem o.g. thermischen
Rauschen gewinnen hier von Braginsky [2, 3, 4] in den 90er Jahren angeführte, von lokalen
Variationen der Temperatur getriebene Rauschbeiträge an Bedeutung. Um das in genan-
nte Literatur beschriebene Rauschen direkt zu untersuchen, wurde ein Experiment mit
einem Mikroresonator entworfen. Dazu wurde mit Ion-Beam-Sputtering Techniken ein
Etalon auf ein kommerzielles Substrat beschichtet. Auch bei der Realisierung dieses Ex-
periments trafen wir auf unerwartete Schwierigkeiten, da die harte Anforderungen an die
Toleranzen des Etalons die Möglichkeiten der Beschichtungsfirma überschritten. In Kol-
laboration mit der Beschichtungsfirma wurde versucht, einen Komprimiss zwischen den
beschichtungstechnischen Möglichkeiten und minimalen experimentellen Anforderungen
zu finden. Mit den heutigen bei den weltweit besten Firmen verfügbaren Technologien und
anhand der gewonnenen Erfahrungen sollte die Fertigung eines solchen Etalons möglich
sein.

Schlagwörter: Pendel, Etalon, Beschichtung.

i



ii



Summary

Thermal noise is a limiting noise source for interferometric gravitational wave detectors.
More precisely, thermal noise effects are expected to be relevant in the frequency range
from a few tens Hz up to a few hundred Hz.

In this work we describe two experiments undertaken to investigate this noise source.
The aim of the first experiment was to measure off-resonant thermal noise due to the

random pendulum movement, driven by temperature. In the early 1990s Saulson [1]
pointed out that the spectrum of this motion is very sensitive to the dominant dissipa-
tion mechanism, i.e. it matters whether the dissipation happens through a friction-like
mechanism, or through internal damping. While investigating this effect we faced the
unexpected influence of seismic noise that led us to develop modifications to the pen-
dulum suspension, which resulted in an enhancement of the instruments sensitivity. It
resulted also that the Holzer’s method for the numerical analysis of the mechanical cou-
plings could in principle be used. The well-known numerical instability of the method
has been practically eliminated.

The second experiment was aimed at investigating internal thermal noise effects in
optical coatings. In this case, additional noise contributions, studied in the late 1990s
by Braginsky [2, 3, 4], play an important role. In order to investigate such effects we
drafted an experiment with a microresonator. The microresonator itself was coated on
a commercial substrate by using the Ion Beam Sputtering technique. Also here, during
realization of the experiment, we faced some unexpected difficulties. In this case the
etalon itself turned out quite challenging to produce for the coating company given the
strict specification needed to reach our goal. We then started an intensive collaboration
with the coating company to tailor our specification to the production constraints. As
a result of this collaboration, we believe that the Etalon could be successfully produced,
albeit at the edge of present-day technology.

Keywords: Pendulum, Etalon, Coating.
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1. Introduction

Gravitational waves (henceforth GW) are ripples in the curvature of space-time and
manifest themselves as fluctuating forces on the masses in the wave’s path. They are a
consequence of Einstein’s general relativity, but since their predicted amplitude is very
small, only in the 1960s did the scientific community start experiments to detect them.
There are currently some detectors in operation, whose sensitivity is constantly improving.
Even though a direct detection has not yet happened, an indirect one is well accepted by
the scientific community [5], confirming Einstein’s theory. All types of detectors detect a
signal h, which in the case of an interferometric GW detector is

h = 2
∆L

L

where L is the instrument’s length.
In the time domain this quantity is obviously dimensionless, but as is customary in

GW research, people prefer to speak about the amplitude spectral density (also denoted
by h) which is the Fourier transform1 of h.

The dimension of the amplitude spectral density h is

[h] =
1√
Hz

.

In order to achieve a direct measurement of gravitational wave, the signal h (also called
strain amplitude) needs to be as small as possible. This task is currently underway and
provides the motivation a large part of this work. Figure 1.1 shows the design sensitivity
of GEO600 [6], one of the interferometric gravitational wave detectors which is already
taking data of scientific value.

The sensitivity of GW detectors, like that shown in Figure 1.1, is ultimately limited by
a number of fundamental noise sources. In the case of interferometric gravitational wave
detectors their core technologies, namely laser interferometry and suspended optics, lead
directly to noise sources that invariably limit their sensitivity. With increasing frequency
we list them as follows:� Seismic noise: intrinsic noise of the Earth surface, also present in the absence of

exceptional events like earthquakes: it is mainly due to ocean waves and anthro-
pogenic noise.� Suspension thermal noise: noise of the mechanical suspension systems holding the
optics, driven by temperature fluctuations.

1Actually since ∆L is a noise term whose average is equal to zero, it is necessary to take its power
spectrum and then the square root.
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1. Introduction
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Figure 1.1.: Sensitivity curve (strain as a function of the frequency) for GEO600 with an
optimization at 250 Hz.� Internal thermal noise: noise of the optical components themselves (from coatings

and from substrates), also driven by temperature fluctuations.� Shot noise: noise due to the quantum nature of the light (in our case coming from
a laser).

In this work we report the results of our investigations of thermal noise within the frame-
work of gravitational wave research, that is we will show our attempt to approach, by
means of a small-scale experiment, a sensitivity level at which thermal noise effects be-
come measurable.
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2. Toward off-resonant thermal noise
measurement

2.1. Thermal noise of the pendulum: velocity vs. internal
damping

The whole optical setup of interferometric GW detectors is suspended as a multiple-stage
pendulum to provide isolation from seismic noise. Even in the case of perfect seismic
isolation, the suspended optics are expected to exhibit a residual movement due to some
sort of Brownian motion. Here, following Saulson’s [1] approach (which relies on the
fluctuation-dissipation theorem of Callen and coworkers [7]), we will show how different
dissipation mechanisms show up in different motions of the suspended mass.

Consider a one dimensional system with mass m moving along the x-axis, whose equa-
tion of motion can be written as

mẍ+ f(ẋ) + g(x) = F (2.1.1)

where� x is the coordinate� f(ẋ) is a term which describes a friction force� g(x) is a force term, resulting from a potential� F is an external force.

If we Fourier transform this equation1 we obtain2

−mω2x̃+ f(iωx̃) + g(x̃) = F̃ (2.1.2)

(ω is the angular frequency). Now we introduce the impedance

Z ≡ F̃

ṽ
≡ F̃

iωx̃
(2.1.3)

The fluctuation-dissipation theorem states that each time we have dissipation, the cor-
responding variable is subject to fluctuation, whose one-sided spectral density is given
by

Sx(ω) =
4kBT

ω2
ℜ(Z−1) (2.1.4)

where
1We suppose that both f and g are linear funtions of their respective arguments.
2We will indicate the fourier trasform of a quantity x with x̃.
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2. Toward off-resonant thermal noise measurement� ℜ(Z−1) indicates the real part of Z−1� kB is the Boltzmann’s constant� T is the temperature.

Taking the square root of this equation gives the linear spectral density

δx̃ ≡
√

(Sx(ω)) =

√

(

4kBT

ω2
ℜ(Z−1)

)

. (2.1.5)

The linear spectral density has the dimension of m/
√

Hz. It depends heavily on the
dissipation mechanism, as we shall see in the next two examples.

Let’s suppose now that the damping is proportional to the velocity through a damping
constant γ, then the equation of motion takes the form (considering the system being
also driven by a spring-like term with spring constant k)

mẍ+ γẋ+ kx = F. (2.1.6)

In the Fourier domain we have

−mω2x̃+ iγωx̃+ kx̃ = F̃ . (2.1.7)

The impedance and its inverse are respectively

Z = γ + i

(

mω − k

ω

)

(2.1.8)

1

Z
=

γ − i
(

mω − k
ω

)

γ2 +
(

mω − k
ω

)2 (2.1.9)

The linear spectral density of the displacement in the case of velocity damping is

δx̃(vd) ≡
√

S
(vd)
x (ω) =

√

4kBTγ

ω2γ2 + (mω2 − k)2
. (2.1.10)

In the case of internal damping the dissipation is taken into account by replacing the
spring constant k with a complex one k⋆ = k(1+iφ), and therefore setting γ = 0. Starting
from the equation of motion

mẍ+ k⋆x = F (2.1.11)

and following the same procedure as before we obtain

δx̃(id) ≡
√

S
(id)
x (ω) =

√

1

ω

4kBTkφ

k2φ2 + (mω2 − k)2
. (2.1.12)
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2.2. Pendulum transfer functions

2.1.1. A quantitative example

We introduce the angular resonant frequency ω0

ω0 ≡
√

k

m

and the quality factor Q, given by

Q ≡ ω0

∆ω

where ∆ω is the full width measured at the half-power points. We then plot the displace-
ment relative to the two models given the following parameters, which are close to those
actually used in our experiment.

Physical quantity Numerical value Units

m 50 · 10−3 Kg

f0 = ω0

(2π) 1.3 Hz

Q 104 −
φ ≡ 1

Q 10−4 −
γ = mω0

Q 4.08 · 10−5 Kg · s−1

T 300 K

As shown in Figure 2.1 the two models result in different displacements, particularly
away from the angular resonance frequency ω0.

Our first goal was to investigate which of the two models is adequate in the case of a
pendulum suspension, that is we wanted to measure the off-resonant thermal noise of a
pendulum suspension. Being aware of the extremely small displacement we undertook to
measure, we set our sensitivity goal initially to 10−17 m/

√
Hz at 100 Hz

2.2. Pendulum transfer functions

From the beginning we addressed what we regarded as the main noise source to be
expected in our experiment: seismic noise. In Figure 2.2 we show a fit of a typical
seismic spectrum compared to the signal we wanted to measure. From this we realize
that the isolation system has to provide at least seven orders of magnitude of isolation
at 100 Hz. By far the most common tool to provide isolation is a pendulum in one of
its variants. A pendulum provides attenuation above its resonance frequency, that is if
we shake the suspension point, the mass at the lower end will shake less for excitations
whose frequencies are greater than the resonant frequency of the pendulum itself.

Let’s now make these ideas more quantitative.
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2. Toward off-resonant thermal noise measurement
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Figure 2.1.: Linear spectral density of the displacement, in the case of velocity damping
and internal damping.

2.2.1. One stage

The equation of motion for an ideal pendulum of length l is3

ẍ1 + ω2
0x1 = 0 (2.2.1)

where

ω0 =

√

g

l
(2.2.2)

and where we indicate the mass position with x1. In the case of a movement of the
suspension point (whose coordinate is denoted by x0) it is easy to see that the equation
of motion is now

ẍ1 + ω2
0(x1 − x0) = 0. (2.2.3)

Moving to the Fourier domain4

−ω2x̃1 + ω2
0(x̃1 − x̃0) = 0 (2.2.4)

and introducing the transfer function

TF ≡
∣

∣

∣

∣

x̃1

x̃0

∣

∣

∣

∣

(2.2.5)

3We will confine ourselves to the small angle approximation.
4To be general, a phase between x̃1 and x̃0 should appear. However here we are interested only in the

modulus of the transfer function which does not depend on any phase. Moreover, pendulum transfer
functions will be multiplied with a noise term (seismic) whose phase is not observable.
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2.2. Pendulum transfer functions
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Figure 2.2.: A Typical (fitted) seismic noise is shown in black. The off-resonant thermal
noise, our sensitivity goal, is also shown.

we obtain

TF =

∣

∣

∣

∣

∣

∣

1

1 − ω2

ω2

0

∣

∣

∣

∣

∣

∣

. (2.2.6)

The transfer function is a measure of the “output”movement of the system normalized to
the “input” movement. In Figure 2.4 we can show a typical pendulum transfer function:
above its resonance frequency a pendulum provides isolation. Note that TF depends on
the resonance frequency: the lower it is, the better. Nevertheless since the resonance
frequency depends on the pendulum length through a square root, it is practically impos-
sible to obtain resonance frequencies lower than 1 Hz. (Note that the pendulum needs to
be put into a vacuum system and vacuum tanks of 10 m or more are just not practical.)
Since one pendulum stage does not provide enough seismic noise isolation, we will study
multiple-stage pendulum systems built by connecting identical stages together. The vari-
ous stages will be identical to one another to achieve a good coupling between them, and
therefore a good overall performance of the whole system.

2.2.2. Two stages

A two stage pendulum (see Figure 2.5) is a well known physical system, however here we
study its transfer function, which is not easily found in common textbooks. We begin
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2. Toward off-resonant thermal noise measurement

m1

x0 x1

φ1 l1

Figure 2.3.: An ideal pendulum (the angle is not to scale, since we limit ourselves to the
small angle approximation).

with the system’s Lagrangian [8]

Lexact =
m1 +m2

2
l21φ̇

2
1 +

m2

2
l22φ̇

2
2 +m2l1l2φ̇1φ̇2 cos(φ1 − φ2)+

+ (m1 +m2)gl1 cosφ1 +m2gl2 cosφ2.
(2.2.7)

This Lagrangian, valid for arbitrary angles, leads to very complex and nonlinear equations
of motion: in the limit of small angles as is in our case, we can write it as

L =
m1 +m2

2
l21φ̇

2
1 +

m2

2
l22φ̇

2
2 +m2l1l2φ̇1φ̇2 −

m1 +m2

2
gl1φ

2
1 −

m2

2
gl2φ

2
2. (2.2.8)

The equations of motion are

(m1 +m2)l1φ̈1 +m2l2φ̈2 + (m1 +m2)gφ1 = 0

l1φ̈1 + l2φ̈2 + gφ2 = 0.
(2.2.9)

In order to obtain the transfer function of this system we have to apply a “stimulus” for
instance at the top of the suspension and observe the effect on the lower mass. This
can be done displacing the angular variable by applying a “translation”: this translation
represents the stimulus which we feed into the system5:

φ1 → (φ1 − φ0)

φ2 → (φ2 − φ0).
(2.2.10)

5Another equivalent approach would be to introduce the displacement coordinates x1 ≡ l1φ1 and x2 ≡

l1φ1 + l2φ2, reformulate the equations of motion in terms of the new variable and the apply the
displacement on the xi. Both methods lead to the same result.

10



2.2. Pendulum transfer functions
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Figure 2.4.: The transfer function of an ideal pendulum: the resonant frequency of 1.3 Hz
is close to the value we implemented in the experiment.

The translated equations of motion are (the accelerations remain unaffected by the trans-
lation)

(m1 +m2)l1φ̈1 +m2l2φ̈2 + (m1 +m2)g(φ1 − φ0) = 0

l1φ̈1 + l2φ̈2 + g(φ2 − φ0) = 0.
(2.2.11)

Proceeding as above and introducing the TF now as

TF ≡
∣

∣

∣

∣

∣

φ̃2

φ̃0

∣

∣

∣

∣

∣

(2.2.12)

we obtain

TF =

∣

∣

∣

∣

∣

∣

1
m1l1l2

(m1+m2)g2ω4 − (l1+l2)
g ω2 + 1

∣

∣

∣

∣

∣

∣

. (2.2.13)

As a simple check, we observe that this transfer function exhibits resonances which coin-
cide with those given by Landau [8]. This observation has important consequences in the
following, when we develop an alternative approach to this problem, and the question of
where the resonances occur will represent a crucial consistency check.

2.2.3. Three [identical] stages

The triple pendulum (see Figure 2.6) is a straightforward extension of the double pendu-
lum. Nevertheless, since the relevant expressions turn out to be quite cumbersome, we
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2. Toward off-resonant thermal noise measurement

m1

m2

x0 x1x2

φ1

φ2

l2

l1

Figure 2.5.: A double pendulum.

will limit ourselves to the particular case in which the three stages are identical. This is
also the most important case since identical stages provide good coupling and therefore
good overall performance of the system. Given equal masses and pendulum lengths,

m1 = m2 = m3 ≡ m

l1 = l2 = l3 ≡ l
(2.2.14)

the exact Lagrangian for the system is

Lexact =
1

2
ml2

{

3φ̇2
1 + 2φ̇2

2 + φ̇2
3

}

+ml2
{

2φ̇1φ̇2 cos(φ1 − φ2) + φ̇1φ̇3 cos(φ1 − φ3) + φ̇3φ̇2 cos(φ3 − φ2)
}

+mgl {3 cos φ1 + 2cos φ2 + cosφ3} .

(2.2.15)
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2.2. Pendulum transfer functions

m1

m2

m3

x0 x1x2 x3

φ1

φ2

φ3

l2

l3

l1

Figure 2.6.: A triple pendulum. We consider the case in which the three stages are iden-
tical to one another.

Now, in the small angle approximation we can write

L =
1

2
ml2

{

3φ̇2
1 + 2φ̇2

2 + φ̇2
3 + 4φ̇1φ̇2 + 2φ̇1φ̇2 + 2φ̇2φ̇3

}

−

− mgl

2

{

3φ2
1 + 2φ2

2 + φ2
3

}

.

(2.2.16)

The Euler-Lagrange equations are:

6φ̈1 + 4φ̈2 + 2φ̈3 + 6ω2
0φ1 = 0

4φ̈1 + 4φ̈2 + 2φ̈3 + 4ω2
0φ2 = 0

2φ̈1 + 2φ̈2 + 2φ̈3 + 2ω2
0φ3 = 0

(2.2.17)

where we have introduced

ω2
0 ≡ g

l
. (2.2.18)
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2. Toward off-resonant thermal noise measurement
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Figure 2.7.: The isolation provided by one, two and three (identical) stages is plotted
against the target which is labeled as velocity and internal damping. Three
stages provide, within this approximation, enough seismic isolation to ensure
a detection at 100Hz.

As in the two previous cases we introduce the “stimulus” in the form of a translation of
the Lagrangian coordinate φi

φ1 → (φ1 − φ0)

φ2 → (φ2 − φ0)

φ3 → (φ3 − φ0).

(2.2.19)

The Euler-Lagrange equations now read:

6φ̈1 + 4φ̈2 + 2φ̈3 + 6ω2
0(φ1 − φ0) = 0

4φ̈1 + 4φ̈2 + 2φ̈3 + 4ω2
0(φ2 − φ0) = 0

2φ̈1 + 2φ̈2 + 2φ̈3 + 2ω2
0(φ3 − φ0) = 0

(2.2.20)

Fourier transforming this system of differential equations, we obtain a system of algebraic
equations. Eliminating φ̃1 and φ̃2 we finally find the system’s transfer function:

TF ≡
∣

∣

∣

∣

∣

φ̃3

φ̃0

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

6ω6
0

ω6 − 9ω2
0ω

4 + 18ω4
0ω

2 − 6ω6
0

∣

∣

∣

∣

. (2.2.21)

We can see in Figure 2.7 that a pendulum isolation chain with three stages could
in principle provide the required isolation from seismic noise. We decided to build a
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2.3. The experimental setup

system with three pendulum stages, considering the resulting isolation good enough for
our purposes. We note, on a practical level, that the isolation chain shows very sharp
resonances at low frequency, which will need proper damping.

2.3. The experimental setup

The experiment itself has already been discussed in Volker Leonhardt’s PhD thesis [9],
here we provide a quick description of the setup, since we want to discuss mainly the
simulations and the theoretical work we did regarding the isolation from seismic noise.
The experiment can be summarized as follows:� Goal: Measure the off-resonant thermal noise in a suspended pendulum, addressing

the theoretical issue raised by Saulson [1].� Target sensitivity: In order to reach the goal, a measurement above resonance is
required. A sensitivity of 10−17 m/

√
Hz at 100 Hz was planned.� Measuring device: A suspended resonator as the last stage of a complex pendu-

lum suspension chain.� Measuring technique: We locked the suspended resonator to a frequency stabi-
lized laser. The feedback signal of the lock is then directly related to the relative
motion of the resonator, by a frequency-depenent calibration factor.� Actuator: In order to lock the resonator frequency to the laser frequency we used
a system of coils and magnets as actuator. The coils are provided with shadow
sensors and locking loop keeps the movement of the magnet inside the coil to a
minimum at the resonances of the suspension. The magnets are attached to one
of the two resonator masses, the coils must also be suspended in order not to feed
seismic noise into the system.� Laser: The laser that we used to lock the resonator had to be frequency stabilized
to a rigid high-finesse resonator (kept in a small vacuum tank), by means of the
standard Pound-Drever-Hall technique.� Seismic isolation: Great care was taken in providing as much seismic isolation
as possible, since we knew that this noise source could spoil the sensitivity. This
problem turned out to be even more severe than expected and will be discussed in
the following chapter.� Technicalities: Among the technical details we mention:

– The pendulum suspension was installed in a vacuum tank to provide isolation
from damping caused by the air.

– The frequency locking mechanism, relying on a system of coil and magnet ac-
tuators, was also suspended to avoid feeding seismic noise through the locking
scheme.
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2. Toward off-resonant thermal noise measurement

– The sharp resonances at low frequency, resulting from the multiple stage pen-
dulum suspension itself, needed a damping scheme also provided by a set of
coils and magnets.

2.4. The noise floor

After setting up the experiment we were able to routinely take data. Since the sensitivity
did not match our expectations we went into an intense noise-hunting phase.

A list of the noise sources we investigated includes:� Seismic shortcut through wires: we replaced the wires going inside the tank
carrying control signals with thinner ones.� Autoalignment: we developed and installed an auto-alignment system to ensure
a better light-coupling into the resonator.� Higher finesse: we replaced the resonator with another with higher finesse, hence
narrower bandwidth, in order to have bigger signals.� Quiet operation: we operated the experiment late at night, to avoid seismic noise
through human activities (the so-called anthropogenic noise).� Control electronics: We optimized the electronics in order to lower electronic
noise.� Additional isolation stage: we added an extra isolation stage in the chain, to
gain more isolation from seismic noise.� Lower Q: we built a low Q pendulum, to increase the thermal noise signal with
respect to the technical noise.

During this noise hunting the sensitivity level remained remarkably constant (in Fig-
ure 2.8 we show a result of a typical measurement), so we decided to take another ap-
proach, focusing again on a noise source known from the beginning: seismic noise.
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2.4. The noise floor
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Figure 2.8.: The typical sensitivity of our setup: lots of possible noise sources were
addressed but the sensitivity stayed remarkably constant. For comparison
also the off-resonant thermal noise goal is shown.
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3. Optimization of the pendulum suspension

3.1. Seismic noise still leaking into the system

The difficulties to lower the noise floor in our experiment led us to a deeper investigation
of our system. The broad resonances in the spectrum and its atypical slope, gave us
reason to think about the seismic isolation again. We made the following hypothesis:

The seismic isolation was not good enough, seismic noise was still leaking into the
system. Since this hypothesis is not compatible with the simple pendulum model we
developed in the previous chapter, we decided to analyze the behaviour of the pendu-
lum suspension system with respect to all degrees of freedom, namely with respect to
movement of the pendulum masses in their six degrees of freedom. This problem, at the
core of the technology of gravitational wave detectors, is not yet fully understood, so we
proceeded in a twofold way, carrying out investigations in the lab and at the same time,
theoretical studies. To be more specific:� We altered the pendulum suspension, within the constraints of the existing experi-

mental setup.� We started to develop new theoretical models capable of explaining the experimental
data and to make useful predictions.

Z

X Y

Figure 3.1.: Schematic representation of the pendulum suspension. The movement of each
mass has to be analyzed in its six degrees of freedom. The pendulum suspen-
sion is designed to minimize the seismic movement of the lowest pendulum
stage (here the red one).

As already mentioned, the simple pendulum model turned out to be misleading when
applied to our setup, which looked similar to that shown in Figure 3.1. Each mass has
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3. Optimization of the pendulum suspension

six degrees of freedom: three displacements along the x, y, z axis and three rotations
around the same axis. It must additionally be noted that a length measurement is always
relative to a reference point and because of the presence of seismic noise we cannot take
any reference in direct contact to the ground. So we built a pair of pendulum suspensions
and then measured the relative motion of the lowest pendulum stages (see Figure 3.2).
In the experiment one pendulum suspension was much heavier and bigger than the other,
thereby providing the reference point for the length measurement. The experimental
setup is described in Volker Leonhardt’s PhD thesis [9].

Z

X Y

Figure 3.2.: In order to measure the off-resonant thermal noise, a pair of pendulum sus-
pensions were needed. Moreover, the last stage of each pendulum is a mirror:
in this way we can optically measure the relative length noise.

The length measurement was performed optically, suspending two mirrors as the last
stage, i.e. a resonator, which reacts to length changes by varying its reflection and trasmis-
sion.
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3.2. Enhancement of the moments of inertia

3.2. Enhancement of the moments of inertia

To reduce the vibration of the pendulum suspension caused by seismic noise, we enhanced
the moments of inertia of the lowest two pendulum stages. This step was achieved by
attaching small wings to the two lowest stages in the pendulum suspensions, as shown in
Figure 3.3 which is a photo of the modified last pendulum stage. Such a modification was

Figure 3.3.: Photo of the last pendulum stage. The hollow cylinder in the center hosted
a standard 1 inch optical mirror. The two additional wings increased the
overall moment of inertia, thereby reducing the resonance frequencies of the
system.

not planned for in the original experimental setup, and this caused some technical diffi-
culties in putting this new stage into place. Nevertheless we were able to overcome these
problems and take data, which are shown in Figure 3.4. The improvement with respect
to the setup without wings is clearly visible and was the best result we could achieve after
addressing many other possible noise sources (see Volker Leonhardt’s PhD thesis [9]). In
order to better understand these data, we also started a theoretical investigation of the
whole pendulum suspension, by extending the simple model with one degree of freedom
per stage, to a much more complex one, in which each pendulum stage has six degrees of
freedom.

3.3. Input-output formalism: Holzer’s method

We used an input-output formalism originally developed by Holzer [10] and recently re-
discovered by G. Cella [11] to model the suspension chains in GW detectors. A clear
introduction to the method can be found in [12]. A very interesting book by Prof. Pes-
tel [13] also describes this method, albeit from an engineering standpoint. By using this
method one avoids complicated analytical expressions for the dynamics of the system:
explicit expressions for the time evolution of the single degree of freedom are neither re-
quired nor obtained. Rather, each building block of the suspension chain can be modeled
as a matrix connecting one input to one output, in the Fourier domain. In principle there
are no limits to the complexity that can be achieved. In practice, since the method is
a numerical one, great care has to be taken in order to avoid numerical instabilities. In
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3. Optimization of the pendulum suspension
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Figure 3.4.: The addition of the small wings resulted in a clear lowering of the measured
length noise. The thermal noise curves shown here are calculated for the
mass without wings.

A

F̃i

x̃i

F̃o

x̃o

Figure 3.5.: Schematic representation of a system in the input-output formalism.

Holzer’s method a system is described by its dynamical variable x̃, and by the force ex-
erted by the system on its boundary F̃ , in the Fourier domain. Each mechanical element
can be modeled by a connecting element between an input pair x̃i, F̃i and an output one
x̃o, F̃o. We are describing a matrix formalism which takes the form

(

x̃o

F̃o

)

=

(

a11 a12

a21 a22

)(

x̃i

F̃i

)

≡ A

(

x̃i

F̃i

)

. (3.3.1)

If two elements are connected in series, that is if the output from one element is the input
of the next one, then we can express this in our matrix formalism by ordinary matrix
multiplication, i.e. given

(

x̃t

F̃t

)

= A1

(

x̃i

F̃i

)

(3.3.2)
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3.4. Consistency checks

(

x̃o

F̃o

)

= A2

(

x̃t

F̃t

)

(3.3.3)

then
(

x̃o

F̃o

)

= A2A1

(

x̃i

F̃i

)

. (3.3.4)

The matrix multiplication is not commutative, so the order in which the matrices appear

A1

F̃i

x̃i

F̃t

x̃t

A2

F̃t

x̃t

F̃o

x̃o

Figure 3.6.: Serial connection of two systems.

does matter.

3.3.1. A simple mass

The Holzer’s matrix for a point-like mass m is

A(m) ≡
(

1 0
mω2 1

)

. (3.3.5)

3.3.2. An ideal spring

For an ideal spring with spring constant k we have

B(k) ≡
(

1 − 1
k

0 1

)

. (3.3.6)

3.4. Consistency checks

Here we give a number of consistency checks in order to show that the method actually
works. Moreover, this will enable us to get acquainted with the new tools, and will help in
the needed generalization from the first example to a working simulation of a pendulum
suspension.
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3. Optimization of the pendulum suspension

mass m

(

1 0

mω2 1

)

F̃i

x̃i

F̃o

x̃o

spring k

(

1 −1
k

0 1

)

F̃i

x̃i

F̃o

x̃o

Figure 3.7.: A schematic representation of the two basic elements, in the matrix formal-
ism: a mass and a spring.

3.4.1. Two masses, two springs

We connect two masses m1 and m2 in series: we obtain

A(m1) · A(m2) =

(

1 0
m1ω

2 1

)(

1 0
m2ω

2 1

)

=

(

1 0
(m1 +m2)ω

2 1

)

= A(m1 +m2) = A(m2) · A(m1)

(3.4.1)

that is the mass is additive and “commutative” as it should be. We can also connect two
springs with constants k1 and k2 in series:

B(k1) ·B(k2) =

(

1 − 1
k1

0 1

)(

1 − 1
k2

0 1

)

=

(

1 −
(

1
k1

+ 1
k2

)

0 1

)

= B

(

k1k2

k1 + k2

)

= B(k2) ·B(k1)

(3.4.2)

also a known result. We observe that in all the examples so far the matrices have a
determinant equal to 1.

3.4.2. A spring-mass system: TF

Now we can connect a spring and a mass together (see Figure 3.8).

M(m,k) ≡ A(m) · B(k) =

(

1 0
mω2 1

)(

1 − 1
k

0 1

)

=

(

1 − 1
k

mω2 1 − mω2

k

)

. (3.4.3)

The input-output relation for this system (in the frequency domain) is simply

(

x̃o

F̃o

)

= M(m,k)

(

x̃i

F̃i

)

. (3.4.4)

The TF is computed by setting the appropriate boundary conditions:
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3.5. Two, three harmonic oscillators connected in series

m

k

xi xo

Figure 3.8.: A spring-mass system.� F̃o = 0 i.e. we leave the output open.

Then by eliminating F̃i we obtain

TF =

∣

∣

∣

∣

x̃o

x̃i

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

1 − mω2

k

)−1
∣

∣

∣

∣

∣

≡

∣

∣

∣

∣

∣

∣

1

1 − ω2

ω2

0

∣

∣

∣

∣

∣

∣

(3.4.5)

where

ω2
0 ≡ k

m
. (3.4.6)

Needless to say, this is the expected transfer function for a mass-spring system. In general,
we observe that, given a matrix A, the TF is

TF =

∣

∣

∣

∣

det (A)

a22

∣

∣

∣

∣

. (3.4.7)

3.5. Two, three harmonic oscillators connected in series

Let’s consider systems composed by two and three spring-mass subsystems connected in
series1. We will study these systems with respect to their input-output behaviour by
using the usual Lagrangian method and the new matrix formalism.

3.5.1. Lagrangian formalism for a 2-stage-system

The Lagrangian of the system shown in Figure 3.9 is

L = K − U =
1

2

[

m1ẋ
2
1 +m2ẋ

2
2 + k1x

2
1 + k2(x1 − x2)

2
]

(3.5.1)

and the equations of motion are

m1ẍ1 + k1x1 + k2(x1 − x2) = 0

m2ẍ2 − k2(x1 − x2) = 0.
(3.5.2)

1As a matter of fact, we lack a formal proof that the matrix method is indeed correct. We show
therefore a number of interesting examples, including the ones we will employ later, to claim that for

our purposes the method behaves correctly.
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3. Optimization of the pendulum suspension

m1

k1

m2

k2

x0 x1 x2

Figure 3.9.: A 2-stage-system.

Introducing the stimulus by displacing the coordinates by x0 we then have

m1ẍ1 + k1(x1 − x0) + k2(x1 − x2 + x0 − x0) = 0

m2ẍ2 − k2(x1 − x2 + x0 − x0) = 0.
(3.5.3)

Taking the Fourier transform and eliminating x̃1 we obtain:

TF ≡
∣

∣

∣

∣

x̃2

x̃0

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
1

k1k2
m1m2ω4 − 1

k1
(m1 +m2)ω2 − 1

k2
m2ω2 + 1

∣

∣

∣

∣

∣

. (3.5.4)

3.5.2. Matrix formalism for a 2-stage-system

In this matrix formalism, the matrix T representing the whole system (see Figure 3.9) is

T ≡M(k2,m2) ·M(k1,m1) =

(

1 − 1
k2

m2ω
2 1 − m2ω2

k2

)

·
(

1 − 1
k1

m1ω
2 1 − m1ω2

k1

)

. (3.5.5)

By using the equation (3.4.7) we get

TF =
∣

∣T−1
22

∣

∣ =

∣

∣

∣

∣

∣

∣

1
(

1 − m2ω2

k2

)(

1 − m1ω2

k1

)

− m1ω2

k1

∣

∣

∣

∣

∣

∣

. (3.5.6)

We can see by direct inspection that the two methods agree, as expected.

3.5.3. Lagrangian formalism for 3 [identical] stages

m

k

m

k

m

k

x0 x1 x2 x3

Figure 3.10.: Three identical stages.
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3.6. Harmonic oscillator [spring-mass system] vs. pendulum

The Lagrangian is a straightforward generalization of the previous one (see Figure 3.10)

L = K − U =
1

2

[

mẋ2
1 +mẋ2

2 +mẋ2
3 + kx2

1 + k(x2 − x1)
2 + k(x3 − x2)

2
]

. (3.5.7)

The equation of motions are

mẍ1 + k(2x1 − x2) = 0

mẍ2 + k(2x2 − x1 − x3) = 0

mẍ3 + k(x3 − x2) = 0

(3.5.8)

By following the same procedure as in the 2-stage case we get

TF =

∣

∣

∣

∣

x̃3

x̃0

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1
(

ω
ω0

)6
− 5

(

ω
ω0

)4
+ 6

(

ω
ω0

)2
− 1

∣

∣

∣

∣

∣

∣

∣

(3.5.9)

where

ω0 ≡
√

k

m
. (3.5.10)

3.5.4. Matrix formalism for 3 [identical] stages

In this case

T ≡M(k,m) ·M(k,m) ·M(k,m)

=

(

1 − 1
k

mω2 1 − mω2

k

)

·
(

1 − 1
k

mω2 1 − mω2

k

)

·
(

1 − 1
k

mω2 1 − mω2

k

)

.
(3.5.11)

The transfer function is

TF =
∣

∣T−1
22

∣

∣ =

∣

∣

∣

∣

∣

∣

∣

1
(

ω
ω0

)6
− 5

(

ω
ω0

)4
+ 6

(

ω
ω0

)2
− 1

∣

∣

∣

∣

∣

∣

∣

(3.5.12)

as expected.
Figure 3.11 shows a comparison of the transfer functions computed by the two methods:

the matrix method (solid lines) versus solution of the Newton equation (dotted lines). By
using the matrix approach we can stack as many stages as we need, and let a computer,
via a suitable numerical algorithm, compute the resulting transfer function.

3.6. Harmonic oscillator [spring-mass system] vs. pendulum

We address here a subtle issue: namely the comparison between a harmonic oscillator
and a pendulum having the same resonant angular frequency ω0. As long as we study
one-stage systems a pendulum and a spring-mass system behave the same way: this is
well known from undergraduate physics. This is no longer true when we start adding
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3. Optimization of the pendulum suspension
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Figure 3.11.: Plot of the transfer function of systems composed by a series connection of
an increasing number of identical spring and mass subsystems: the matrix
method (solid lines) agrees with the direct method of solving the equations
of motion (filled circles). Moreover, the former enables us to obtain TFs
(here a system with six stages) that would be difficult to obtain with the
latter.

more stages. We have already calculated all the quantities needed to make this issue
clear. The transfer function for a double pendulum (with identical stages) is

TF
(2)
pendulum =

∣

∣

∣

∣

∣

∣

1
1
2

ω4

ω4

0

− 2ω2

ω2

0

+ 1

∣

∣

∣

∣

∣

∣

(3.6.1)

while the transfer function for a 2-stage spring and mass system is

TF
(2)
spring+mass =

∣

∣

∣

∣

∣

∣

1
ω4

ω4

0

− 3ω2

ω2

0

+ 1

∣

∣

∣

∣

∣

∣

. (3.6.2)

In Figure 3.12 we show these two transfer functions. This means a simple pendulum
cannot be modeled by the same matrix as for a spring and mass. So, we need to take a
step back and find a matrix that models a pendulum and that reproduces the pendulum
transfer function we already derived, for single- and multiple-stage systems.

3.7. The matrix for a pendulum

The task of finding an appropriate matrix for a pendulum is not an easy one. The
reason lies in the method itself, which does not use Newton’s equation, rather a black-
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3.7. The matrix for a pendulum
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Figure 3.12.: Plot of the transfer functions of two similar albeit not equivalent systems:
a 2-stage pendulum and a 2-stage spring and mass system.

box approach in which the building blocks (the matrices) are, more or less, taken as given.
Consider again the algebraic equation (in Fourier space) governing an oscillator (spring
and mass system) or a pendulum stage as well

−mω2x̃+mω2
0(x̃− x̃0) = 0. (3.7.1)

We observe that in a double pendulum, for example, the upper mass is subjected to a
bigger restoring force since the tension of the upper connecting wire is proportional to
the sum of the two masses. Therefore we introduce a modified restoring term, through

k ≡ mω2
0 → m⋆ω2

0 (3.7.2)

where m⋆ represents the sum of the masses from the bottom to the stage in consideration.
In this way we give up one the feature of the method: namely the possibility to describe

each subsystem as a black-box. Nevertheless, since the parameters representing the whole
system (here the pendulum chain) are always known, the drawback of describing a stage
(a subsystem) by using information belonging to others ones is a minor drawback. This
modification enables us to reproduce the already known transfer function for a multiple
pendulum which we obtained by solving the Euler-Lagrange equation of the system.

3.7.1. A double pendulum in the matrix formalism

As we suggested, each of the two stages can be modeled by the matrix

P (mi,m
⋆
i , ωi) ≡

(

1 − 1
m⋆

i
ω2

i

miω
2 1 − miω2

m⋆

i
ω2

i

)

(3.7.3)
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3. Optimization of the pendulum suspension

where i = 1, 2. Now for the lower stage (i = 2) we have simply

m⋆
2 = m2 (3.7.4)

while for the upper one (i = 1)
m⋆

1 = m1 +m2. (3.7.5)

It follows that the double pendulum can be described by the matrix T

T = P (m2,m
⋆
2, ω2) · P (m1,m

⋆
1, ω1)

=

(

1 − 1
m⋆

2
ω2

2

m2ω
2 1 − m2ω2

m⋆

2
ω2

2

)

·
(

1 − 1
m⋆

1
ω2

1

m1ω
2 1 − m1ω2

m⋆

1
ω2

1

)

=

(

1 − 1
m2ω2

2

m2ω
2 1 − ω2

ω2

2

)

·
(

1 − 1
(m1+m2)ω2

1

m1ω
2 1 − m1ω2

(m1+m2)ω2

1

)

.

(3.7.6)

Since the single matrices have determinant equal to 1, the TF is

TF =
∣

∣T−1
22

∣

∣ =

∣

∣

∣

∣

∣

1
m1l1l2

(m1+m2)g2ω4 − l1+l2
g ω2 + 1

∣

∣

∣

∣

∣

(3.7.7)

in agreement with Equation (2.2.13).

3.7.2. A triple pendulum in the matrix formalism [identical stages]

Adding one more stage means that the matrix T is the product of three matrices repre-
senting the single subsystems. Taking these subsystems to be identical we can write:

T = P (m3,m
⋆
3, ω0) · P (m2,m

⋆
2, ω0) · P (m1,m

⋆
1, ω0)

=

(

1 − 1
mω2

0

mω2 1 − ω2

ω2

0

)

·
(

1 − 1
2mω2

0

mω2 1 − ω2

2ω2

0

)

·
(

1 − 1
3mω2

0

mω2 1 − ω2

3ω2

0

)

≡
(

t11 t12
t21 t22

)

.
(3.7.8)

The transfer function is

TF =

∣

∣

∣

∣

1

t22

∣

∣

∣

∣

=

∣

∣

∣

∣

6

−α6 + 9α4 − 18α2 + 6

∣

∣

∣

∣

(3.7.9)

where
α ≡ ω

ω0
. (3.7.10)

This is also consistent with our previous result.

3.8. Generalization to complex systems: Newton’s equations

method

In the case of a system composed by one stage with two mutually coupled degrees of
freedom, we can write the equations of motion as

m1ẍ1 = −k11x1 − k12x2

m2ẍ2 = −k21x1 − k22x2.
(3.8.1)
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3.9. Two degrees of freedom: input-output method

If we introduce the notation

qo ≡
(

x1

x2

)

(3.8.2)M ≡
(

m1 0
0 m2

)

(3.8.3)K ≡
(

k11 k12

k21 k22

)

(3.8.4)

we can write Mq̈ = −Kq. (3.8.5)

Then, as previously, we displace the coordinate

qo → qo − qi (3.8.6)

and move to the Fourier domain

−ω2Mq̃o = −K(q̃o − q̃i) (3.8.7)

we get finally

q̃o =
[K− ω2M]−1 Kq̃i (3.8.8)

this Equation generalize the spring-mass system in the case when the system has more
than one degree of freedom.

3.9. Two degrees of freedom: input-output method

In the framework of the input-output method, the generalization to coupled (sub)-systems
can be expressed by the following system of equations

(

q̃o

F̃ o

)

= T

(

q̃i

F̃ i

)

(3.9.1)

where the q̃i, F̃ i are 2-component vectors and T is a 4 × 4 matrix. Carrying on the
analogy with a spring-mass system, we write:

T =

( 1 −K−1

ω2M 1− ω2MK−1

)

. (3.9.2)

We let the output be free; that is we let

F̃ o =

(

0
0

)

(3.9.3)

so that the equations reads

q̃o = 1q̃i − K−1F̃ i

F̃ o =

(

0
0

)

= ω2Mq̃i +
(1− ω2MK−1

)

F̃ i.
(3.9.4)
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3. Optimization of the pendulum suspension
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Figure 3.13.: In a two degree of freedom system the method shows numerical instabilities
(depending on the number of stages), even in this case when the degrees of
freedom of each subsystem are uncoupled.

After eliminating F̃ i we have

q̃o = 1qi − K−1
[1− ω2MK−1

]−1
(−ω2M)q̃i

= 1q̃i −
[K− ω2M]−1

(−ω2M)q̃i

=
[K− ω2M]−1 Kq̃i

(3.9.5)

in agreement with equation (3.8.8).

3.10. Stabilization of the algorithm

It is known that the method just described gives rise to instabilities especially for higher
order systems [12]. As an example we again embed our simple system with a resonance at
1.3Hz in a two degree of freedom formalism and we observe the results when we stack more
than one stages together. The results of the simulations are shown in Figure 3.13: the
method becomes unstable. In order to stabilize the algorithm we must observe that the
TFs we compute are polynomial functions of the frequency. These polynomials contain
terms with opposite signs and addition/subtraction of large quantities is known to be a
serious issue in numerical methods [14]. We implemented a brute force approach2 using
a custom number of digits, bigger than the number of digits which can be obtained with
float variables in the C language. We stress that such experiments are now possible,

2When in doubt use brute force. -Ken Thompson-
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3.11. The next step
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Figure 3.14.: By increasing the number of digits, the numerical instability appears at
higher and higher frequencies. Given our needs for a reliable algorithm for
TFs up to 1 kHz 60 digits are in this case sufficient.

given the availability of programs or programming languages that offer such a possibility.
We employed here a C++ library for symbolic calculations named ginac3. In Figure 3.14
we show the simulation of a system with four stages and two degrees of freedom, with no
coupling between them: the instability of the algorithm cannot be in principle eliminated,
but with a sufficient number of digits we obtain results which are completely satisfactory.

We also observe that every 10 additional digits we can compute 5 additional orders of
magnitude of the TF. This is not accidental since the TF itself depends on even powers
of the frequency f2, f4, . . ..

3.11. The next step

The results we achieved are twofold:� We enhanced the moments of inertia of the suspended masses: the reduction of the
measured length noise is a clear indication that in our suspension unwanted cross
couplings between different degrees of freedom was a limiting noise source.� We started to model the suspension by employing a method whose advantages
and disadvantages are well known. We were able to eliminate the most evident
disadvantage, namely its numerical instability, by using a custom number of digits
during the calculations.

3Official Web site: http://www.ginac.de
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3. Optimization of the pendulum suspension

The identification of the correct matrix to describe the pendulum suspension would enable
us to consistently model the whole pendulum suspension and finally fit the measured data.
This goal, which in turn would enable us to build even better seismic isolation systems, can
be now regarded within reach. In the following chapters we will report our investigations
into internal thermal noise, that is the noise due to the optical devices themselves.
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4. Internal thermal noise

4.1. Thermal noise in mirror coatings

Internal thermal noise is the noise shown by the optical components themselves. Because
of thermodynamic fluctuations in the temperature, and because of losses and absorption,
optical coatings and substrates are expected to generate noise which will mimic a length
noise. This length noise is expected to be the one of the dominant noise sources in GW
detectors, in the frequency range around some hundreds of Hz up to 1 kHz. Despite the
relevance of internal thermal noise for GW detectors (apart from some theoretical works)
still very little is known. We will take Braginsky’s work as a starting point [2, 3, 4], with
special attention to thermal noise arising from the optical coating.

There are four mechanisms leading to thermal noise in coatings:� Thermodynamic fluctuations in the coating are converted by the thermal expansion
coefficient α into length fluctuations: this is thermoelastic noise.� Absorbed photons give rise to local temperature “jumps” in the coating, which are
also converted by means of α into length noise: this is the photo-thermal noise.� Thermodynamic fluctuations of temperature also gives rise to variations of the ma-
terial’s refractive index, thereby changing its optical length: this is the so-called
thermorefractive noise.� Losses in the coating are converted to length noise through the fluctuation dissipa-
tion theorem: this is Brownian noise (structural damping).

Each of these noise sources has its own “signature”, most importantly its frequency de-
pendence, but also its parameter dependence. It is of great relevance for the optimization
of GW detectors to understand these noises and to measure them in the frequency range
around 1 kHz.

Let r0, rT , d be the laser beam radius, the diffusive heat transfer length, and the coating
thickness respectively, we then require

r0 ≫ rT ≫ d (4.1.1)

We will re-derive the relevant expressions for the thermoelastic and the photo-thermal
noise. By a critical application of the same procedure it is possible to deduce the expres-
sion for the other two types of noise as well.
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4. Internal thermal noise

4.2. From elasticity theory to the thermoelastic problem

We give here a derivation of the formula for thermoelastic noise. Our approach is to
explicitly write down some of the calculations missing in the literature, with the aim to
provide some insight neither easily available nor easily reproducible by oneself. Our wish
is to show a rather self-contained derivation. We will closely follow Landau’s book1 on
elasticity [15] and Branginsky’s papers [2, 3, 4].

First we will show how the basic equation of the theory of elasticity can be derived,
enabling us to solve a simple problem, namely the computation of the displacement of a
half-infinite body subjected to a δ-like force.

Then by using the Green tensor we will generalize this result to an arbitrary force, and
finally we will apply this result to an optical substrate and its coating.

We anticipate that in this case we will have no direct force acting on the optical
substrate, rather the thermodynamic temperature fluctuations will induce a stress which
in turn leads to displacement of the surface, which is the quantity of interest.

4.2.1. The strain and stress tensors

Each point P of a generic body is described in a three dimensional Cartesian system by a
vector r ≡ (x, y, z) ≡ (x1, x2, x3). Subjected to a deformation, the vector r representing
P will become r′, so that the displacement of P is

u = r′ − r. (4.2.1)

Let’s consider two points P and Q belonging to the body under consideration. Let dxi

and dx′i, the components2 of the difference vector between P and Q, before and after the
displacement, respectively. Then distance between P and Q before the deformation is

dl =
√

dx2
1 + dx2

2 + dx2
3 ≡

√

dx2
i (4.2.2)

and after the deformation is

dl′ =
√

(dx′1)
2 + (dx′2)

2 + (dx′3)
2 ≡

√

(dx′i)
2. (4.2.3)

Squaring both sides and using the equation (4.2.1) we have

dl2 = dx2
i (4.2.4)

(dl′)2 = (dx′i)
2 = (dxi + dui)

2. (4.2.5)

If we now write

dui =
∂ui

∂xk
dxk (4.2.6)

1This means that we will follow step by step Landau’s arguments, adding some of the calculations that
are left out there, employing the notation found there.

2Here latin indexes run over 1, 2, 3. The summing convention over repeated indices is also assumed.
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4.2. From elasticity theory to the thermoelastic problem

then the distance between P and Q after the deformation is

(dl′)2 = dl2 + 2
∂ui

∂xk
dxkdxi +

∂ui

∂xt
dxt

∂ui

∂xk
dxk (4.2.7)

= dl2 +

(

∂ui

∂xk
+
∂uk

∂xi

)

dxkdxi +
∂ui

∂xt
dxt

∂ui

∂xk
dxk. (4.2.8)

Since the indices on the right hand side of the last expression are summed over, we can
rename them getting

(dl′)2 = dl2 + 2uikdxidxk (4.2.9)

where we introduced the strain tensor uik defined as

uik ≡ 1

2

(

∂ui

∂xk
+
∂uk

∂xi
+
∂ul

∂xk

∂ul

∂xi

)

≈ 1

2

(

∂ui

∂xk
+
∂uk

∂xi

)

. (4.2.10)

We explicitly observe that:� the strain tensor is symmetric

uik = uki (4.2.11)� the strain tensor is dimensionless.

Let’s consider the special case in which the strain tensor is diagonal: in this case the
length element (dl′)2 after the deformation is

dl′ = (δik + 2uik)dxidxk (4.2.12)

= (1 + 2u11)dx
2
1 + (1 + 2u22)dx

2
2 + (1 + 2u33)dx

2
3. (4.2.13)

In particular, the relative length change along -let’s say the x-axis- can be written as

dx′1 − dx1

dx1
=

√
1 + 2u11 − 1 ≈ u11 (4.2.14)

and the relative volume change is

dV ′ − dV

dV
= uii. (4.2.15)

this is a useful result: the trace of the strain tensor represents the relative volume change.
The strain tensor tells us about the deformation of the body: in addition, we need another
tensor more closely related to the cause of the deformations. This is the so-called stress
tensor . To introduce it, let’s consider a portion of our arbitrary body and the force acting
on it. This force can be written as

∫

F dV (4.2.16)

where F is the force per unit volume acting on the unit volume of the body, so that F dV
is the force acting on dV . Since inside the volume the resulting force has to be equal to
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4. Internal thermal noise

zero, the net force on the volume should be expressed only via a surface integral. This
can be done by introducing a tensor σik such that

Fi ≡
∂σik

∂xk
. (4.2.17)

Now we can transform the volume integral into a surface one
∫

Fi dV =

∫

∂σik

∂xk
dV =

∮

σik dfk (4.2.18)

where dfk are the components of the vector df of an element of the surface, oriented as
the external normal to the surface. The σik is the so-called stress tensor .

Three important facts regarding σik should be noted:� σik is symmetric
σik = σki. (4.2.19)� The stress tensor corresponding to a uniform compression can be expressed as

σik = −pδik (4.2.20)

where p is the pressure and δik the usual Kronecker delta symbol. From this we get
the important result that the dimensions of σik are the same as that of a pressure,
namely N · m−2.� For a body in equilibrium, when no other forces are present, we must have

∂σik

∂xk
= 0. (4.2.21)

The natural question to ask now is: “what is the relationship between uik and σik?”
We can answer this question by considering a body subjected to small deformations

δui due to internal stresses. The work δR done by the forces of the internal stresses per
unit volume is

δR = Fiδui =
∂σik

∂xk
δui. (4.2.22)

Integrating over the body

R =

∫

δR dV =

∫

∂σik

∂xk
δui dV (4.2.23)

and then integrating by parts
∫

δR dV =

∮

σikδui dfk −
∫

σik
∂δui

∂xk
dV (4.2.24)

By considering an unlimited body whose deformation at infinity is negligible, we can
discard the surface term leaving us with

∫

δR dV = −1

2

∫

σik

(

∂δui

xk
+
∂δuk

xi

)

dV (4.2.25)

= −
∫

σikδuik dV (4.2.26)
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4.2. From elasticity theory to the thermoelastic problem

and then
δR = −σikδuik. (4.2.27)

We can check the physical dimensions of this results3. Since R is a work term, its
dimensions are Joule. Therefore

[δR] = J · m−3 = N · m−2 = [σik] = [σikδuik] (4.2.28)

since uik is dimensionless. If we consider the body undergoing a reversible thermodynam-
ical transformation then, from a well known result, we can write for the variation of the
internal energy E per unit volume

dE = TdS − dR (4.2.29)

(T and S are temperature and entropy, respectively). Substituting our expression for dR
we get

dE = TdS + σikduik (4.2.30)

or, recalling the definition of the free energy (per unit volume) F ,

F = E − TS (4.2.31)

dF = −SdT + σikduik. (4.2.32)

Differentiating E with respect to uik at constant entropy gives us

σik =

(

∂E

∂uik

)

S

(4.2.33)

and similarly

σik =

(

∂F

∂uik

)

T

(4.2.34)

This important result, connecting thermodynamic with elasticity theory, will be very
useful in the following.

4.2.2. Hooke’s law

In order to be able to apply the thermodynamic relation we obtained, it is necessary to
know the explicit expression of the free energy of the body as a function of the strain
tensor. This expression can be easily found in the case of small deformation of isotropic
bodies, by expressing F as a power series in uik. If we consider a body at constant
temperature with no deformation, we must have no stress, and since

σik =
∂F

∂uik
(4.2.35)

we can say that F cannot have terms linear in uik. It is known that from a symmetric
tensor one can build only two independent scalars which are quadratic in the tensor

3We also observe that the summed indices are correctly paired, we have a scalar both on the left and
the right hand side of the equation.
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4. Internal thermal noise

components: we can choose u2
ii, the square of the sum of the diagonal components, and

u2
ik the sum of the square of the tensor components4. Developing F in a power series of
uik and stopping at the second order term, we can then write for the free energy of a
deformed body

F =
λ

2
u2

ii + µu2
ik (4.2.36)

where λ and µ are known as Lamé coefficients. It is useful to consider two kinds of
deformation: the ones in which the volume remains constant but the body’s shape changes
(also known as shear deformation), and the ones in which the volume changes while the
body’s shape remains constant (also known as compression). For compression the strain
tensor is a diagonal tensor. It turns out that each arbitrary deformation can be expressed
as a shear and as a uniform compression: for this purpose we write down the following
identity

uik =

(

uik − 1

3
δikull

)

+
1

3
δikull. (4.2.37)

The first term is a pure shear since δii = 3 and the second one is a uniform compression.
Letting

Ωik ≡ uik − 1

3
δikull (4.2.38)

we can re-express F as:

F =
λ

2
u2

ii + µ

(

Ωik +
1

3
δikull

)2

=
λ

2
u2

ii + µ

(

Ω2
ik +

1

9
δikullδikutt +

2

3
δikΩikull

)

=
λ

2
u2

ii + µ

(

Ω2
ik +

1

3
ullutt +

2

3
δikΩikull

)

=

(

λ

2
+

1

3
µ

)

u2
ii + µ(Ωik)

2 +
2

3
µδikull

(

uik − 1

3
δikutt

)

=

(

λ

2
+

1

3
µ

)

u2
ii + µ(Ωik)

2 +
2

3
µδikulluik − 2

9
µδikδikullutt

=

(

λ

2
+

1

3
µ

)

u2
ii + µ(Ωik)

2 +

(

2

3
− 6

9

)

µu2
ll

giving

F = µΩ2
ik +

K

2
u2

ll (4.2.39)

where we introduced

K ≡ λ+
2

3
µ. (4.2.40)

Since the free energy is a positive definite quantity and since K and µ are independent
quantities related to compressions and shears respectively, they must be both positive

K > 0 µ > 0. (4.2.41)

4The difference between these two quantities will be very important in the following calculations.
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4.2. From elasticity theory to the thermoelastic problem

The stress tensor can be computed as the derivative of the free energy at constant tem-
perature. As an intermediate step we compute the differential of F , dF .

dF = Kulldutt + 2µΩikdΩik

= Kulldutt + 2µ

(

uik − 1

3
δikull

)

duik − 2

3
δikµ

(

uik − 1

3
δikull

)

dutt

= Kulldutt + 2µ

(

uik − 1

3
δikull

)

duik − 2

3
µ

(

uii −
3

3
ull

)

dutt

that is

dF = Kulldutt + 2µ

(

uik −
1

3
δikull

)

duik (4.2.42)

and the stress tensor is

σik =
∂F

∂uik
= Kullδik + 2µ

(

uik − 1

3
δikull

)

. (4.2.43)

We can compute the sum of the diagonal elements of the stress tensor as

σii = Kullδii + 2µ

(

uii −
1

3
δiiull

)

= 3Kull. (4.2.44)

Another relation that will be used is the “inverse” relation, that is the expression of uik

as a function of σik. In doing this it is sensible to handle the two cases i = k and i 6= k
separately, since expressions like σii are error prone, due to our summing convention.

σik =











Kull + 2µ

(

uik − 1

3
ull

)

i = k

2µuik i 6= k

(4.2.45)

=











2µuik + ull

(

K − 2

3
µ

)

i = k

2µuik i 6= k

(4.2.46)

Re-gathering the two cases together

σik = 2µuik + δikull

(

K − 2

3
µ

)

(4.2.47)

uik =
1

2µ

[

σik − δikull

(

K − 2

3
µ

)]

(4.2.48)

=
1

2µ

[

σik − δikσll

3K

(

K − 2

3
µ

)]

(4.2.49)

=
1

9K
δikσll +

1

2µ

(

σik − 1

3
δikσll

)

(4.2.50)
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4. Internal thermal noise

This last equation which states that the deformation is proportional to the applied force,
is Hooke’s law. The physical dimensions of K,µ are the same as of σik

[K] = [µ] = N · m−2. (4.2.51)

Following the standard literature one introduces the Young modulus E and and Poisson’s
ratio σ

E ≡ 9Kµ

3K + µ
(4.2.52)

σ ≡ 1

2

3K − 2µ

3K + µ
. (4.2.53)

By direct substitution we get F, σik, uik expressed by means of E, σ

F =
E

2(1 + σ)

(

u2
ik +

σ

1 − 2σ
u2

ll

)

(4.2.54)

σik =
E

1 + σ

(

uik +
σ

1 − 2σ
ullδik

)

(4.2.55)

uik =
1

E
[(1 + σ)σik − σσllσik] . (4.2.56)

The physical dimensions of E, σ are

[E] = N · m−2 (4.2.57)

[σ] dimensionless (4.2.58)

From here on, we will employ the expressions containing the constants E, σ.

4.2.3. The equilibrium equations

We are now in a position to write the equilibrium equation for an isotropic body: this
equation comes in many different forms, but it can always be deduced from very simple
principles. Let’s consider for example an isotropic body subjected only to internal stresses:
the equilibrium equation reads

∂σik

∂xk
= 0. (4.2.59)

Regarding external forces that are directly applied to the body and usually are the cause of
deformations, they appear as boundary conditions that should be obeyed by the solution
of the equilibrium equation. If we indicate with P the external force per unit area acting
on the unit surface of the body, Pdf is the force acting on the element df . At equilibrium
this force has to be compensated by −σikdfk. We have then

Pidf − σikdfk = 0. (4.2.60)

Writing

dfk = nkdf (4.2.61)
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4.2. From elasticity theory to the thermoelastic problem

where n is the unit vector normal to the surface, we have

σiknk = Pi. (4.2.62)

This boundary condition will be used in the forthcoming calculations. We now give an
explicit form for the equilibrium equations. Using our expression for the stress tensor
employing E and σ we have5

∂

∂xk

(

σ

(1 − 2σ)
ullδik + uik

)

= 0 (4.2.63)

σ

(1 − 2σ)

∂ull

∂xi
+
∂uik

∂xk
= 0. (4.2.64)

After substituting the definition of the strain tensor in terms of the displacement, we get
the following second order differential equation for the displacement itself:

∂2ui

∂x2
k

+
1

(1 − 2σ)

∂2ul

∂xi∂xl
= 0. (4.2.65)

To help to translate this equation into vectorial form, we introduce the following unit
vectors

î ≡ unit vector along the x axis (4.2.66)

ĵ ≡ unit vector along the y axis (4.2.67)

k̂ ≡ unit vector along the z axis (4.2.68)

and we recall the definitions of three operators:� the divergence of a vector u

~∇u ≡
3
∑

i=1

∂ui

∂xi
≡ ∂ui

∂xi
(4.2.69)� the gradient of a scalar φ

~∇φ ≡ î
∂φ

∂x
+ ĵ

∂φ

∂y
+ k̂

∂φ

∂z
(4.2.70)� the Laplacian of a scalar φ

∆φ ≡ ∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
(4.2.71)

5E, σ are not supposed to depend on xi.
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By virtue of linearity we can also apply the Laplacian (component-wise) to a vector u,
obtaining

∆u ≡ î∆ux + ĵ∆uy + k̂∆uz

= î

(

∂2ux

∂x2
+
∂2ux

∂y2
+
∂2ux

∂z2

)

+ ĵ

(

∂2uy

∂x2
+
∂2uy

∂y2
+
∂2uy

∂z2

)

+ k̂

(

∂2uz

∂x2
+
∂2uz

∂y2
+
∂2uz

∂z2

)

It is then easy to see that Equation (4.2.65) can be written in vector form as

∆u +
1

1 − 2σ
~∇~∇u = 0. (4.2.72)

If we use the following standard result from vector analysis

~∇~∇u = ∆u + ~∇× (~∇× u) (4.2.73)

we can equivalently write

~∇~∇u− 1 − 2σ

2(1 − σ)
~∇× (~∇× u) = 0. (4.2.74)

It is important to note that surface forces do appear in the solutions only through the
boundary conditions. The equilibrium equations we wrote do not take any other vol-
ume forces into account, other than the ones resulting from the stress itself. This is not
enough to study the effect of temperature variation, since on a qualitative basis, temper-
ature variation leads via the expansion coefficient to additional volume forces that should
appear in the equilibrium equation. However the correction can be made afterwards, this
means that, given the equilibrium equations we found, we can “add” additional terms
that represent such a volume force. The appropriate starting point is our expression of
the free energy F

F =
K

2
u2

ll + µΩ2
ik. (4.2.75)

Variation of the temperature causes the free energy to change; if we take this change as
small we can introduce an extra term into the free energy which is a first order scalar built
from uik. The only possible choice is then to add a term proportional to the temperature
change and to ull, therefore we can write

F (T ) = −Kα(T − T0)ull + µΩik +
K

2
u2

ll. (4.2.76)

The stress tensor becomes then

σik =
∂F

∂uik
= −Kα(T − T0)δik +Kullδik + 2µΩik (4.2.77)
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4.2. From elasticity theory to the thermoelastic problem

where α is a new extra coefficient we added. What can we say about it? Let’s look at
the case in which the body undergoes a free thermal expansion: in such a case the stress
must be identically zero; σik = 0. This in turn means that the displacement vector uik

must be diagonal, moreover we have for the sum of its diagonal elements

ull = α(T − T0) (4.2.78)

ull =
dV

V
. (4.2.79)

since the sum of the diagonal elements is the relative volume change, we can say that α
is the thermal volumetric6 expansion coefficient. With the extra term due to the thermal
expansion the equilibrium equation now reads

∂σik

∂xk
=

Eσ

(1 + σ)(1 − 2σ)

ull

xi
+

E

1 + σ

∂uik

xk
−Kα

∂T

∂xi
= 0. (4.2.80)

Inserting the expression for K, and moving to vector notation we have

E

1 − 2σ

[

3(1 − σ)

1 + σ
~∇~∇u− 3(1 − 2σ)

2(1 + σ)
~∇× (~∇× u)

]

=
E

1 − 2σ
α~∇T. (4.2.81)

The reason why we do not simplify the coefficients that appear in both the right and the
left hand sides of this equation is an important one.

The left hand side is more related to the body under study and to its elastic properties.
The right hand side is more related to the source term which leads to the stress. If we
have a body which can be thought of as a composition of a bulk and a coating and if we
are interested in studying the stress induced by the coating, then we must substitute into
the left hand side the parameters for the body itself that are responsible for the global
elastic properties of the whole body, and into the right hand side the parameters for the
coating, which are to be considered as “source” terms.

4.2.4. Equilibrium of an elastic body constrained by a plane

Before we can attack the main problem, we can benefit by studying the following exam-
ple, whose geometry is already similar to the one we will employ in the thermal noise
calculation. Let’s consider a semi-infinite elastic body whose free surface we choose to be
coincident with the plane z = 0. Our goal is to find the deformation of the surface as a
response to forces applied on that surface.

The equilibrium equation is

~∇~∇u + (1 − 2σ)∆u = 0 (4.2.82)

We look for solutions which are of the form

u = f + ~∇φ (4.2.83)

6The term volumetric is quite relevant since we will see that in Braginsky’s paper another expansion
coefficient is introduced, leading to an annoying “missing coefficient problem.”
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where φ is a scalar and the vector f obeys the Laplace equation

∆f = 0. (4.2.84)

Substituting equation (4.2.83) into (4.2.82)

~∇~∇f + 2(1 − 2σ)∆(~∇φ) = 0 (4.2.85)

~∇
(

~∇f + 2(1 − 2σ)∆φ
)

= 0 (4.2.86)

gives

2(1 − 2σ)∆φ = −~∇f . (4.2.87)

Let’s choose the reference system such that the z axis is directed into the body. We now
write fx and fy as derivatives with respect to z of two corresponding functions gx and gy

belonging to a vector function g

fx ≡ ∂gx

∂z
; fy ≡ ∂gy

∂z
. (4.2.88)

Since fx and fy obey the Laplace equation, gx and gy can be chosen such that the obey
it also

∆gx = 0; ∆gy = 0 (4.2.89)

Then Equation (4.2.87) becomes (by exchanging the order in which the derivatives are
taken)

2(1 − 2σ)∆φ = − ∂

∂z

(

∂gx

∂x
+
∂gy

∂y
+ fz

)

. (4.2.90)

Since fz, gx, gy are harmonic functions, that is they obey Laplace equation, we can express
φ in the following way

φ = − z

4(1 − σ)

(

fz +
∂gx

∂x
+
∂gy

∂y

)

+ ψ (4.2.91)

where ψ is also harmonic

∆ψ = 0. (4.2.92)

We have reduced the problem of finding u to the problem of finding fz, gx, gy and ψ,
each satisfying the Laplace equation. The boundary conditions for this problem are
simple, since we have only one free surface at our disposal and we are interested only
in the response to a pressure applied orthogonally to that surface. Mathematically the
boundary condition (4.2.62) now simplifies to

σxz|z=0 = 0 (4.2.93)

σyz|z=0 = 0 (4.2.94)

σzz|z=0 = Pz. (4.2.95)
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4.2. From elasticity theory to the thermoelastic problem

Substituting the expression for σik as function of gx , gz , fz and ψ we have

{

∂2gx

∂z2
+
∂Γ

∂x

}∣

∣

∣

∣

z=0

= 0 (4.2.96)

{

∂2gy

∂z2
+
∂Γ

∂x

}
∣

∣

∣

∣

z=0

= 0 (4.2.97)

∂

∂z

{

fz −
(

∂gx

∂x
+
∂gy

∂y

)

+ 2
∂ψ

∂z

}∣

∣

∣

∣

z=0

= −2(1 + σ)

E
Pz (4.2.98)

where we introduced the quantity

Γ ≡ 1 − 2σ

2(1 − σ)
fz −

1

2(1 − σ)

(

∂gx

∂x
+
∂gy

∂y

)

+ 2
∂ψ

∂z
. (4.2.99)

It turns out that since the functions fx , gx , gy and ψ we introduced are not uniquely deter-
mined by their defining formulas, we are still left with some freedom in their specification:
we then require that

Γ = 0 (4.2.100)

so that the boundary conditions simplify to

∂2gx

∂z2

∣

∣

∣

∣

z=0

= 0 (4.2.101)

∂2gy

∂z2

∣

∣

∣

∣

z=0

= 0 (4.2.102)

∂

∂z

{

fz −
(

∂gx

∂x
+
∂gy

∂y

)

+ 2
∂ψ

∂z

}
∣

∣

∣

∣

z=0

= −2(1 + σ)

E
Pz . (4.2.103)

Now that we have set up the proper equations and the proper boundary conditions, we
specify the kind of force to apply to the free surface. The force will be δ-like, parallel to
the z-axis and applied to the center of the reference system:

Pz = Fzδ(x)δ(y). (4.2.104)

This kind of pressure, despite its very singular mathematical behavior, can be easily
handled since in the following this pressure will be integrated over x and y and the
presence of the δ functions makes computing the integral trivial. Moreover, once the
problem for a δ-like pressure is known, we can, by using the standard Green’s tensor
method, easily solve for arbitrary pressures. It is known from potential theory that a
harmonic function Υ going to zero at infinity and having a normal derivative ∂Υ

∂z at z = 0
is given by the expression

Υ(x, y, z) = − 1

2π

∫ ∫

∂Υ(x′, y′, z)

∂z

∣

∣

∣

∣

z=0

dx′dy′

r̃
(4.2.105)

r̃ ≡
√

(x− x′)2 + (y − y′)2 + z2. (4.2.106)
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Now substituting for Υ the following three functions

Υ1 ≡ fz −
(

∂gx

∂x
+
∂gy

∂y
i

)

+ 2
∂ψ

∂z
(4.2.107)

Υ2 ≡ ∂gx

∂z
(4.2.108)

Υ3 ≡ ∂gy

∂z
(4.2.109)

whose boundary conditions we have already computed, we get

Υ1(x, y, z) = − 1

2π

∫ ∫

∂Υ1(x
′, y′, z)

∂z

∣

∣

∣

∣

z=0

dx′dy′

r̃
=

= − 1

2π

−2(1 + σ)

E

∫ ∫

Pz
dx′dy′

r̃
=

1 + σ

πE

Fz

r

Υ2(x, y, z) = − 1

2π

∫ ∫

∂Υ2(x
′, y′, z)

∂z

∣

∣

∣

∣

z=0

dx′dy′

r̃
= 0

Υ3(x, y, z) = − 1

2π

∫ ∫

∂Υ3(x
′, y′, z)

∂z

∣

∣

∣

∣

z=0

dx′dy′

r̃
= 0

r̃ ≡
√

(x− x′)2 + (y − y′)2 + z2

r ≡
√

x2 + y2 + z2.

Or, using the definitions of Υi

fz −
(

∂gx

∂x
+
∂gy

∂y

)

+ 2
∂ψ

∂z
=

1 + σ

πE

Fz

r
(4.2.110)

∂gx

∂z
= 0 (4.2.111)

∂gy

∂z
= 0. (4.2.112)

Taking the derivative of ∂gx/∂z with respect to x and then integrating with respect to
dz from ∞ to z we obtain

∂gx

∂x
= 0 (4.2.113)

and similarly
∂gy

∂y
= 0. (4.2.114)

We are left with a system of two equations in two unknowns: fz and ∂ψ/∂z, namely

Γ =
1 − 2σ

2(1 − σ)
fz + 2

∂ψ

∂z
= 0 (4.2.115)

fz + 2
∂ψ

∂z
=

1 + σ

πE

Fz

r
(4.2.116)
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which gives

fz =
2(1 − σ2)

πE

Fz

r
(4.2.117)

∂ψ

∂z
=

(2σ − 1)(1 + σ)Fz

2πEr
. (4.2.118)

The displacement of the free surface is finally given by

uz|z=0 =
1 − σ2

πE

Fz

r

∣

∣

∣

∣

z=0

. (4.2.119)

If we remember the definition of Fz we can write

uz|z=0 =
1 − σ2

πE

∞
∫

−∞

∞
∫

−∞

dx′dy′
Fzδ(x − x′)δ(y − y′)
√

(x− x′)2 + (y − y′)2

=
1 − σ2

πE

∞
∫

−∞

∞
∫

−∞

dx′dy′
Pz|z=0

√

(x− x′)2 + (y − y′)2
.

(4.2.120)

In the simple case of a uniform compression, the pressure along the z-axis, for example,
is just the σ33 component of the stress tensor. In this particular case we have

uz|z=0 =
1 − σ2

πE

∞
∫

−∞

∞
∫

−∞

dx′dy′
σzz(x

′, y′)|z=0
√

(x− x′)2 + (y − y′)2
. (4.2.121)

This result, though very specific, is the key to understanding thermoelastic noise, since
in the thermoelastic noise calculations no forces appear directly and one has to compute
the displacement of the free surface expressing it as an integral on the stress tensor
which in turn, through the elasticity and the heat equation, is connected to temperature
fluctuations whose behavior is known from thermodynamics.

4.3. The thermoelastic problem

We can now face the main task: the derivation of the expression for thermoelastic noise
as given by Braginsky [4]. Before turning to the actual calculation we point out that just
by the word “thermoelastic” we are faced with two kinds of problems mixed together:
we have an elastic problem where no direct forces are applied to the body, rather the
stresses which cause the displacements are due to thermodynamic fluctuations of the
temperature, which are converted thorough the expansion coefficient into volume change
and then stress.

We will from now on employ Braginsky’s notation [4]. Such a decision to change the
notation in the middle of a work which should be consistent is motivated by the desire
to be able to closely follow two distinct but related works, and to show the links between
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4. Internal thermal noise

them. The temperature fluctuations are given quite generally by the heat equation with
a source term, which we will write as

∂u

∂t
− a2∆u = F (r, t) (4.3.1)

a ≡ κ

ρC
(4.3.2)

where u is the temperature fluctuation of the body at (r, t) around the mean value T ,
and the source term F is a statistical term whose mean value is given by7

〈F (r, t)F ⋆(r1, t1)〉 = 2
kBT

2κ

(ρC)2
δ(t− t1)∆Υ

Υ ≡ [δ(x− x1)δ(y − y1) (δ(z − z1) + δ(z + z1))] .

(4.3.3)

If we take the Fourier transform of the heat equation, the temperature fluctuations can
be written as

u(r, t) =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3kdω

(2π)4
u(k, ω)eiωt+ikr (4.3.4)

u(k, ω) =
F (k, ω)

a2(k)2 + iω
(4.3.5)

〈F (k, ω)F ⋆(k1, ω1)〉 = (2π)4
(

2
kBT

2κ

(ρC)2

)

δ(ω − ω1)|k|2Υ̃

= F 2
0 T

2
0 (2π)4|k|2Υ̃

(4.3.6)

where

Υ̃ ≡ [δ(kx − kx1
)δ(ky − ky1

) (δ(kz − kz1
) + δ(kz + kz1

))]

F 2
0 T

2
0 ≡ 2

kBT
2κ

(ρC)2
.

We approximate the body under investigation by a semi-infinite one: the elasticity equa-
tion is then (we indicate Poisson’s ratio8 with ν and the elastic deformations with ~ν)

1 − ν

1 + ν
~∇~∇~ν − 1 − 2ν

2(1 + ν)
~∇× ~∇× ~ν = α~∇u. (4.3.7)

The boundary conditions on the free surface are given by

σzz|z=0 = 0 (4.3.8)

σyz|z=0 = 0 (4.3.9)

σxz|z=0 = 0 (4.3.10)

7We explicitly introduce complex conjugation and complex terms like eiωt for the Fourier transform. At
the end of a calculation, when a physically measurable quantity is presented, it should be verified that
it is real.

8In the previous section we indicated Poisson’s ratio with σ.
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With respect to Equation (4.2.81) we note a factor of 3 is missing. This is simple to
explain, given our preliminary work. In Landau’s notation α ≡ αL is a volume expansion
coefficient, that is

dV

V
= αLdT (4.3.11)

while in Braginsky’s notation α ≡ αB is a linear expansion coefficient

dl

l
= αBdT (4.3.12)

and since
dV

V
=
dl3

l3
= 3

dl

l
(4.3.13)

we see no contradiction between the two equations. In the following we will use the linear
expansion coefficient, that is it should be read

α ≡ αB (4.3.14)

unless stated otherwise. In a gravitational wave detector the mirrors are massive objects
made of high quality fused silica and coated to be highly reflective for laser light. These
mirrors have linear dimensions l which are much bigger than the laser beam spot size
r0: this justifies the half infinite approximation. Moreover, since the coating thickness
d is usually much smaller than the laser beam spot size, the source term can be further
simplified to

α~∇u→ αd~∇ (uδ(z − ǫ)) (4.3.15)

that is, it can be considered as δ-like. (ǫ is a small quantity to stress the fact that we
are interested in a thin layer near z = 0.) Now, applying the same strategy as before, we
write the solution for the displacement ~ν as

~ν = ~ν(a) + ~∇ϕ. (4.3.16)

It is easy to see that ϕ satisfies the following Poisson’s equation

∆ϕ =
1 + ν

1 − ν
αduδ(z − ǫ) (4.3.17)

without boundary conditions. The function ~ν(a) satisfies the usual elasticity equation
(4.3.7) with its right hand side equal to zero, and the following boundary conditions

σzz =
E

1 + ν

(

∂2ϕ

∂y2
+
∂2ϕ

∂x2

)∣

∣

∣

∣

z=0

σxz = − E

(1 + ν)

∂2ϕ

∂z∂x

∣

∣

∣

∣

z=0

σyz = − E

(1 + ν)

∂2ϕ

∂z∂y

∣

∣

∣

∣

z=0

.

(4.3.18)
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The solution of the Poisson equation (4.3.17) is

ϕ(x, y, z) = − αd(1 + ν)

4π(1 − ν)

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

dx′dy′dz′

× u(x′, y′, z′)(δ(z − ǫ) + δ(z + ǫ))
√

(x− x′)2 + (y − y′)2 + (z − z′)2
.

Carrying out the integration over z′ gives

ϕ(x, y, z) = − αd(1 + ν)

4π(1 − ν)

∞
∫

−∞

∞
∫

−∞

dx′dy′

× 2u(x′, y′, z)
√

(x− x′)2 + (y − y′)2 + z2

(4.3.19)

where we added an extra δ term to enforce symmetry of the function ϕ. The laser beam
hitting the optical component carries out a weighted measurement of the displacement of
the mirror at z = 0 along the z-axis. Hence, what we measure is

X̄(t) =
1

πr20

∞
∫

−∞

∞
∫

−∞

dxdy e−(x2+y2)/r2

0

(

∂ϕ

∂z
+ ν(a)

z

)∣

∣

∣

∣

z=0

. (4.3.20)

In our particular case
∂ϕ

∂z

∣

∣

∣

∣

z=0

= 0 (4.3.21)

so that

X̄(t) =
1

πr20

∞
∫

−∞

∞
∫

−∞

dxdy e−(x2+y2)/r2

0 ν(a)
z

∣

∣

∣

z=0
. (4.3.22)

We divide the remaining work into three steps, namely:� Compute σzz|z=0.� Compute the displacement of the surface as an average with a Gaussian weighting.� Compute the spectrum of this displacement.

4.3.1. Computation of the stress at the free surface: σzz|z=0

We substitute into the boundary condition Equation (4.3.18) the expression for ϕ

σzz|z=0 =
E

(1 + ν)

(

−αd(1 + ν)

4π(1 − ν)

)(

∂2

∂x2
+

∂2

∂y2

)

∞
∫

−∞

∞
∫

−∞

dx′dy′
2u(x′, y′, 0)

√

(x− x′)2 + (y − y′)2
.
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We observe that each function also depends on time: this has to be from now on explicit
since at the end we will compute spectra, which are Fourier transforms of time correlation
functions. We express u(x, y, z, t) as the inverse Fourier transform of ũ(kx, ky, kz, ω) giving

σzz|z=0 = − αdE

2π(1 − ν)

(

∂2
x + ∂2

y

)

∞
∫

−∞

∞
∫

−∞

dx′dy′
√

(x− x′)2 + (y − y′)2

×
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3kdω

(2π)4
ũ(kx, ky, kz, ω)eiωt+ikr′ .

Using the solution of the heat equation, we find

σzz|z=0 = − αdE

2π(1 − ν)

(

∂2
x + ∂2

y

)

∞
∫

−∞

∞
∫

−∞

dx′dy′
√

(x− x′)2 + (y − y′)2

×
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3kdω

(2π)4
F̃ (kx, ky, kz, ω)

a2(k)2 + iω
e−ikreikreiωt+ikr′ .

Taking the integrals over the plane z = 0 gives

σzz|z=0 = − αdE

2π(1 − ν)

(

∂2
x + ∂2

y

)

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3kdω

(2π)4
F̃ (kx, ky, kz, ω)

a2(k)2 + iω
eiωt+ikrI1

I1 ≡
∞
∫

−∞

∞
∫

−∞

dx′dy′
√

(x− x′)2 + (y − y′)2
eik(r′−r).

The integral I1, once expressed in polar coordinates, turns out to be elementary:

I1 =
2π

k⊥
(4.3.23)

where

k⊥ ≡
√

k2
x + k2

y . (4.3.24)

so that, we have

σzz|z=0 = − αdE

(1 − ν)

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3kdω

(2π)4
1

k⊥

F̃ (kx, ky, kz, ω)

a2(k)2 + iω

(

∂2
x + ∂2

y

)

eiωt+ikr

=
αdE

(1 − ν)

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3kdω

(2π)4
k⊥F̃ (kx, ky, kz, ω)

a2(k)2 + iω
eiωt+ikr.
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4. Internal thermal noise

4.3.2. Computation of the displacement of the free surface: X̄(t)

X̄(t) =
1

πr20

∞
∫

−∞

∞
∫

−∞

dxdy e−(x2+y2)/r2

0ν(a)
z (x, y, z)|z=0

=
1 − ν2

π2Er20
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∫

−∞

∞
∫

−∞

dxdy e−(x2+y2)/r2

0

∞
∫

−∞

∞
∫

−∞

dx′dy′
σzz(x

′, y′, z′)|z′=0
√

(x− x′)2 + (y − y′)2

=
2(1 + ν)αdE

Eπr20

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3kdω

(2π)4
F̃ (k, ω)

a2(k)2 + iω
eiωtI2

where we introduced

I2 ≡
∞
∫

−∞

∞
∫

−∞

dxdy eikre−(x2+y2)/r2

0 .

I2 is also a standard integral which turns out to be

I2 = πr20e
−k2

⊥
r2

0
/4.

We can now express X̄(t) and its complex conjugate in a form suitable for the following
calculations:

X̄(t) = 2αd(1 + ν)

∞
∫

−∞

∞
∫

−∞

∞
∫
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∞
∫

−∞

d3kdω

(2π)4
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X̄⋆(t+ τ) = 2αd(1 + ν)

∞
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∫
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d3k1dω1

(2π)4
F̃ ⋆(k1, ω1)

a2(k1)2 − iω1
e−iω1(t+τ)−k2

⊥
r2

0
/4.

(4.3.25)

4.3.3. Computation of the spectrum of the thermoelastic noise

We introduce the two-time correlation function as

B(τ) ≡ 〈X̄(t)X̄⋆(t+ τ)〉. (4.3.26)

By direct substitution of Equation (4.3.25) into Equation (4.3.26) we have

B(τ) = 4α2d2(1 + ν)2
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3kdω

(2π)4
e−iωτ−k2

⊥
r2

0
/2

|a2(k)2|2 + ω2
|k|22F 2

0 T
2
0

=

∞
∫

−∞

dω

2π
e−iωτ



8α2d2(1 + ν)2
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3k

(2π)3
e−k2

⊥
r2

0
/2|k|2 F 2

0 T
2
0

|a2(k)2|2 + ω2



 .

(4.3.27)
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4.3. The thermoelastic problem

The quantity in square brackets is called the two-sided spectral density. That is

B(τ) ≡
∫ ∞

−∞

dω

2π
e−iωtStwo-sided(ω) (4.3.28)

If we choose to integrate only over positive ω we are left with the one-sided spectral
density, which is a quantity closer to the directly measurable ones (by means of a spectrum
analyzer for example). This means we can define another quantity, Sone-sided(ω), as

B(τ) ≡
∫ ∞

0

dω

2π
e−iωtSone-sided(ω). (4.3.29)

In our case

Sone-sided(ω) = 16α2d2(1 + ν)2
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d3k

(2π)3
e−k2

⊥
r2

0
/2|k|2 F 2

0 T
2
0

|a2(k)2|2 + ω2
. (4.3.30)

Moving to cylindrical coordinates, with the z-axis as the cylinder axis, we have

S(ω) ≡ Sone-sided(ω) =
4α2d2(1 + ν)2F 2

0 T
2
0

π2

∞
∫

−∞

∞
∫

0

dkzdk⊥2k⊥
2

|k|2e−r2

0
k2

⊥
/2

|a2(k)2|2 + ω2
. (4.3.31)

We use the condition

ω ≪ a2

r20
(4.3.32)

and the fact that, since the z dimension is much smaller than the other two we have

k2 ≈ k2
z . (4.3.33)

Within these two approximations the last two integrals we have to compute decouple
from each other, and taking the integral over k⊥ we are left with

S(ω) =
2α2d2(1 + ν)2F 2

0 T
2
0

π2

∞
∫

−∞

dkz
k2

z

a4k4
z + ω2

2

r20

=
4α2d2(1 + ν)2F 2

0 T
2
0

π2r20
(2I3) .

(4.3.34)

The last integral is also a standard one 9:

I3 ≡
∞
∫

0

dkz
k2

z

a4k4
z + ω2

=
π

4ω2

4

√

4ω6

a12
. (4.3.35)

After a little algebra we can finally write the spectrum of the thermoelastic noise as

S(ω) =
4
√

2(1 + ν)2

π

α2d2kBT
2

r20
√
ρCκω

. (4.3.36)

9This integral given in Gradshteyn’s book [16] is in our opinion incorrectly calculated. Another book of
integrals, albeit an older one, by Gröbner [17] gives the correct result.
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4. Internal thermal noise

4.3.4. Interpretation of equation (4.3.36)

While being correct, the expression we derived for the spectrum of the thermoelastic
noise, Equation (4.3.36) needs to be further analyzed before we can substitute numerical
values in it. Note that the given equation refers to an homogeneous body, whose surface,
due to temperature fluctuations, moves.

If the free surface of the body is coated with a material whose parameters coincide with
the bulk’s ones except for the linear expansion coefficient, then we simply have to use a
new linear expansion coefficient in the formula given by:

α = αlayer − αbulk (4.3.37)

where αlayer and αbulk are the linear expansion coefficients of the coating and of the bulk,
respectively. If Poisson’s ratio ν and Young modulus E are also distinct between coating
and substrate, then we should proceed as follows: We recall here Equation (4.2.81) and
express it in Braginsky’s notation

E

1 − 2ν

[

(1 − ν)

1 + ν
~∇~∇~ν − 1 − 2ν

2(1 + ν)
~∇× (~∇× ~ν)

]

=
E

1 − 2ν
α~∇u (4.3.38)

In the case in which the coating is very thin with respect to the other geometrical di-
mensions of the body, the elastic properties are given by the bulk, while the coating’s
parameter determines the “source term” responsible for the stresses induced by the tem-
perature fluctuations. Practically this means that the coefficient appearing on both sides
of this equation are numerically no longer identical, as the one on the left hand side is
related to the bulk, and the one on the right hand side is related to the coating:

(

E

1 − 2ν

)

bulk

[

(1 − ν)

1 + ν
~∇~∇~ν − 1 − 2ν

2(1 + ν)
~∇× (~∇× ~ν)

]

=

(

E

1 − 2ν
α

)

layer

~∇u.

Multiplying both sides by (1−2ν
E )bulk we have

1 − ν

1 + ν
~∇~∇~ν − 1 − 2ν

2(1 + ν)
~∇× (~∇× ~ν) =

(

1 − 2ν

E

)

bulk

(

E

1 − 2ν
α

)

layer

~∇u.

We see that considering a thin coating whose parameters are different from that of the
bulk leads us to employ a new linear expansion coefficient given by

α = (αlayer)modified − αbulk =

(

1 − 2ν

E

)

bulk

(

E

1 − 2ν

)

layer

αlayer − αbulk. (4.3.39)

The very last step consists of taking into account that coatings are usually made by a
sequence of alternating layers. In this case the modified linear expansion coefficient for
the layer we found becomes a sum of two contributions weighted by the relative length
of each of the two components: if we label these two components with indices 1, 2 then
we can write

α =
α1d1

d1 + d2

E1(1 − 2ν)

E(1 − 2ν1)
+

α2d2

d1 + d2

E2(1 − 2ν)

E(1 − 2ν2)
− αbulk (4.3.40)

where d1, d2 are the total lengths of layer number 1 and 2, respectively.
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4.4. Photo-thermal noise

4.4. Photo-thermal noise

As we did for the thermoelastic noise, we closely follow Braginsky’s work [2], adding some
more hints about the explicit calculations involved.

The photo-thermal noise is the result of a two-step process. First photons are absorbed
within the optical material giving rise to thermal phonons. After a very short time the
thermal phonons are absorbed as well, resulting in a local jump in temperature. Here we
will give a derivation of the noise spectral density without resorting to the full elasticity
theory framework: it can be shown that the differences are minor and it is possible to
carry out the full calculation just as we did for the thermoelastic noise. The body is
considered as semi infinite. The reference system is chosen so that its free surface (that
which is hit by the laser radiation) is identified by the plane x = 0, and the body occupies
the region x ≥ 0. We start with a heat equation with a source term (on its left hand
side):

∂u(x, t)

∂t
− a2∂

2u(x, t)

∂x2
=

w(t)

ρCπr20
2δ(x). (4.4.1)

The boundary condition is
∂u(x, t)

∂x

∣

∣

∣

∣

x=0

= 0 (4.4.2)

where

a2 ≡ λ⋆

ρC
(4.4.3)

and where λ⋆ is the thermal conductivity, ρ is the material density and C is the spe-
cific heat capacity. The source term is different from the one used in the study of the
thermoelastic noise. The physical reason is that the source term, which is ultimatively
responsible for the noise, is now a simple function of the material constants of the body
and the rate of absorbed photons which we wrote as w(t), and which is quantitatively
defined by the following relations:

〈w(t)w⋆(t1)〉 = ~ω0W0δ(t − t1) (4.4.4)

w(t) = Wabs(t) − 〈Wabs(t)〉 ≡Wabs(t) −W0 (4.4.5)

where W0 is the mean absorbed power, Wabs(t) is the absorbed power at an instant t,
ω0 is the laser angular frequency (that is the angular frequency of the absorbed photons)
and r0 is the laser beam radius. The quantity whose spectral density we are interested
in is the one-dimensional displacement of the mirror along the x-axis: if we indicate this
displacement with X1D we can immediately write it as the integral of the temperature
along the x-axis times the linear expansion coefficient α

X1D = α

∫ ∞

0
dxu(x, t). (4.4.6)

If we indicate with ũ(k, ω) the Fourier transform of u(x, t) we can write

X1D(t) = α

∫ ∞

0
dx

∫ ∞

−∞

∫ ∞

−∞

dωdk

(2π)2
e−iωte−ikxũ(k, ω). (4.4.7)
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4. Internal thermal noise

If we take the Fourier transform of the heat equation we get the following expression for
ũ(k, ω)

ũ(k, ω) =
w̃(ω)

(ρCπr20)(a
2k2 + iω)

(4.4.8)

where w̃(ω) is the Fourier transform of w(t). Plugging this expression for ũ(k, ω) into
(4.4.7) we have
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1

2
(2πδ(k))

=
α

2ρCπr20

∫ ∞
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dω

2π
e−iωt w̃(ω)

iω
.

(4.4.9)

Its complex conjugate is10

X⋆
1D(t1) =

α

2ρCπr20

∫ ∞

−∞

dω1

2π
eiω1t1 w̃

⋆(ω1)

(−iω1)
. (4.4.10)

The two-time correlation function is

〈X1D(t)X⋆
1D(t1)〉 =

α2

4
(

ρCπr20
)2

∫ ∞
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2π

e−iω(t−t1)

ω2
≡ B(t− t1)

(4.4.11)

where we used the defining property of w(ω). The two-sided spectral density is the Fourier
transform of the two-time correlation function, so

B(t) ≡
∫ ∞

−∞

dω

2π
e−iωtStwo-sided(ω). (4.4.12)

The one-sided spectral density is similarly defined: the only difference is that the integral
is only over positive frequencies. In this case

B(t) ≡
∫ ∞

0

dω

2π
e−iωtSone-sided(ω). (4.4.13)

Since the one-sided spectral density is the one more directly measurable, e.g. by means
of a spectrum analyzer, we have

SPT (ω) ≡ Sone-sided(ω) = 2Stwo-sided(ω) =
2α2

~ω0W0
(

ρCπr20
)2
ω2

(4.4.14)

10We have to explicitly check at the end of the calculation that physical quantities are actually real
quantities as they should be.
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4.5. Quantitative comparison between the different thermal

noise effects

After the theoretical derivation of the expression for coating thermal noise due to ther-
modynamic temperature fluctuations and to photon absorption, we turn our attention to
the comparison between the four types of noise. Their analytical expressions are [2, 4]

STE(ω) =
4
√

2(1 + ν)2

π

α2d2kBT
2

r20
√
κρCω

SPT (ω) = 2α2 ~ω0W0

(ρCπr20)
2ω2

STR(ω) =
β2λ2kBT

2

πr20
√
ρCκ

√
ω

SBN (ω) =
4kBT (1 − ν2)φ

ω
√

2πEr0

(4.5.1)

where STE is thermoelastic noise, SPT is photo-thermal noise, STR is thermorefractive
noise, and SBN is Brownian noise. The parameters appearing in these formulas are
listed and discussed in Appendix A. We can see in Figure 4.1 that the expected noises
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Figure 4.1.: Quantitative comparison of the four different thermal noises. For each noise
the square root of the spectral density is plotted, which is the quantity di-
rectly comparable with experiment. The parameters are the those given by
Braginsky [4]: in particular the beam radius is r0 = 6 · 10−2 m.

sources produce very small displacements. One parameter which can be changed in order
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4. Internal thermal noise

to produce bigger noises is the beam radius r0. Making the beam radius a bit smaller
enables us to use smaller optics.
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Figure 4.2.: Same plot as Figure 4.1, but using a smaller beam radius, r0 = 10−3 m . The
noises are in this case bigger, so that at least one of them can be measured in
a small scale experiment: the red line labeled “Sensitivity” sets the sensitivity
level required for such a goal.

Figure 4.2 shows the sensitivity level we must achieve to be able to see at least one
kind of thermal noise. This sensitivity will be the most important design parameter for
the internal thermal noise experiment which we will draft in the following chapter.
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5. Toward internal thermal noise
measurement

5.1. Shaping the experiment around the required sensitivity

In the previous chapter we obtained an estimate for the length noise produced by internal
thermal noise. In order to carry out such a measurement we found that a sensitivity of

∆l = 10−18 m√
Hz

(5.1.1)

is required. This quantity affects the experimental setup in each of its subsystems, which
are:� The laser1.� The resonator2 which reacts to the internal thermal noise altering its transmission

and reflection.� The readout system which is basically composed of a photodiode converting the
reflected or transmitted light into a current, and an electronic device which analyzes
the electrical signal.

In this case, the length noise of the resonator (which is the physical quantity we want to
measure) and the frequency noise are related to each other3 by the following relation:

∆f

f0
=

∆l

l0
(5.1.2)

where� l0 is the length of the resonator.� f0 is the laser frequency.� ∆f,∆l are the frequency and length noises respectively.

1We will always refer in the following to a Nd:YAG laser running at the wavelength λ = 1064 nm: this
laser system is the standard in GW research.

2A resonator is a standard tool in optics, see for example [18].
3This relationship between ∆l and ∆f enable us to consider a length variation as a frequency variation,

and vice versa.
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5. Toward internal thermal noise measurement

If we choose a small resonator (i.e. if l0 is small), we can convert a small length change
into a relatively large frequency change that can be measured.

Since we are interested in measuring the coating thermal noise, it makes sense to employ
a small device where the coating should be responsible for most of the noise.

An etalon coated on a standard one inch optical substrate is a sensible choice since by
choosing a reasonably small length we can convert length noise into frequency noise which
can be detected.

An important issue has to be stressed: if the coating thermal noise results in a coherent
displacement of both of the etalon’s surfaces, we will get very little signal if any at all.
We must state that the effect of the etalon on the theory we developed and on the size
of the expected signal is not yet known. The employment of an etalon seemed to us the
only way to measure internal thermal noise in a table-top experiment. In other words:
the discrepancy between the theory developed in the last chapter for a coated substrate
and the measurement’s results were one of the goals of the experiment.

PD1

PD2

Etalon

Figure 5.1.: The experimental setup: a laser beam is sent to the etalon. The transmitted
light power is measured by the photodiode PD1, while the photodiode PD2

measures the incident light power. The two signals are then analyzed by a
spectrum analyzer. (The laser has to be intensity- and frequency-stabilized.)

That being said, the experimental setup is in principle very simple: given an etalon
resonant with the laser frequency, we can measure the transmitted light intensity by means
of a photodetector. This electric signal will carry the information about the length noise,
in addition to a number of noise sources that need to be kept to a minimum. We will
then establish the main etalon’s features:� Length: l0� Optical response function.

Regarding the length, we need a very short etalon. Since the etalon sits between two
high reflectivity coatings, we need to make this distance much larger than the length of
a single coating layer. Since the single layers have lengths of l = λ

4 where λ is the laser
wavelength, we choose the etalon’s optical length to be

l0 = 10λ ≈ 10 µm. (5.1.3)
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5.2. Tight constraints on the etalon

The optical response function should be as steep as possible: that is, the etalon should
react to small length variations (driven by internal thermal noise) with big changes of
trasmitted light power. In the next section we will set the relevant parameters that have
to be met by the company that actually produce the etalon, and find out the optimal
working point that will give us the largest variation of the trasmitted light power per unit
length change.

5.1.1. Calibration issues

The calibration of the results can be easily done by analyzing the etalon’s trasmission
profile near the selected working point. This can be done in two ways: by changing the
laser frequency and by changing the optical length by a known amount. The former
method is achieved by acting on the laser crystal piezo itself, the latter by tilting the
etalon.

5.2. Tight constraints on the etalon

We review here the basic etalon’s theory and we give constraints on etalon’s parameters
which have to be met in order to be able to reach the sensitivity goal.

The etalon’s basic theory is well known [19]: it is a direct consequence of the interference
of light. Let’s consider an etalon of thickness d and refraction index is n: its optical length
is then

l = nd. (5.2.1)

If we illuminate it with laser light of wavelength λ, then the reflected and transmitted
light will depend on the length difference

∆s = 2d
√

n2 − sin2 α. (5.2.2)

We indicate the transmissivity, reflectivity and losses at each of the two plane surfaces

α

  d
n

Figure 5.2.: Schematic of an etalon illuminated by a laser beam.
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5. Toward internal thermal noise measurement

with T,R and A respectively. These quantities4 are dimensionless and constrained be-
tween 0 and 1. Conservation of energy gives

T +R+A = 1. (5.2.3)

The reflected and transmitted light intensities, with respect to the incoming light inten-
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Figure 5.3.: Fraction of the transmitted power with respect to the incident power as a
function of the frequency difference between laser frequency and etalon’s res-
onance frequency, for different etalon’s transmissivities. The incident angle
is α = 0, the optical resonator length is 10λ and we assumed no losses.

sity5 I0, can now be written as

IR = I0R
1 + (R + T )2 − 2(R + T ) cos ∆φ

1 +R2 − 2R cos ∆φ
(5.2.4)

IT = I0
T 2

1 +R2 − 2R cos ∆φ
(5.2.5)

where

∆φ = 2π
∆s

λ
. (5.2.6)

The expression for the transmitted and reflected light intensity are periodic, as can be
inferred by the presence of the cos ∆φ function. However, if we remember that the
resonator is 10λ long, we find that two transmission maxima are separated in frequency
by the so-called free spectral range, which is in our case

FSR =
c

2nd
≈ 15 THz. (5.2.7)

4T, R and A are trasmissivity, reflectivity and losses with respect to laser power. We will use for T, R

and A the suffix ppm which means part per million.
5In this work we used I0 for both the incoming light intensity and for the maximal measured photocurrent

(later in the text). It should be easy, by means of a dimensional analysis, to distinguish bewteen the
two meanings.
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5.2. Tight constraints on the etalon

This means the resonant condition has to be achieved with very good precision, since the
resonator length cannot be changed after its production and since it is not possible to scan
the laser frequency over such a range6. In Figure 5.3 we show the etalon’s trasmissivity
as a function of the laser frequency according to different values of T . (We assumed no
losses.)

As we already said, the etalon should react to small variation of its length with big
variation of its reflectivity. The length sensitivity target given by Equation (5.1.1) can
be expressed, by using Equation (5.1.2) as a frequency target ∆f

∆f ≈ 30
Hz√
Hz

. (5.2.8)

If we now set the incoming laser power to P0 = 1 mW in order not to damage the etalon,
we immediately find out that our shot noise level for a photocurrent measurement is (see
Appendix B)

Ishot = 12.6
pA√
Hz

(5.2.9)

usually one requires the actual measure to be considerably bigger than the shot noise,
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Figure 5.4.: Graph of the etalon sensitivity S(f) as a function of f , for different values
for T . No losses are here assumed (A = 0).

which means having an acceptable signal to noise ratio. Requiring our signal to be two
times bigger than the shot noise level we then must have

Isignal = 2Ishot = 25.2
pA√
Hz

(5.2.10)

If we now
6The laser frequency can be tuned at most by 15 GHz by acting on the laser crystal temperature (from

the laser producer’s web site http://innolight.de).
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5. Toward internal thermal noise measurement� take the derivative of IT /I0 with respect to the frequency� normalize this quantity to a maximal measured photocurrent (see Appendix B) of
0.5 mA� multiply the result by the expected frequency noise we want to detect, which is
∆f ≈ 30 Hz√

Hz

we finally obtain the etalon’s sensitivity S(f) as a function of the frequency diffence
between the laser frequency and the etalon’s resonance frequency. It is easy to see that
the sensitivity S(f) has dimensions of

[S(f)] =
A√
Hz

(5.2.11)

and can therefore be directly compared with Ishot and Isignal. The condition that has to
be fulfilled is

|S(f)| ≥ Isignal (5.2.12)

at least for some frequencies f . In Figures 5.4, 5.5 and 5.6 we clearly see that the required
trasmissivity at each etalon surface should be

T ≈ 100 ppm (5.2.13)

and the losses
A ≈ 10 ppm (5.2.14)

in order to be able to measure the internal thermal noise.
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Figure 5.5.: Graph of the etalon sensitivity S(f) as a function of f , for different values
for T , in the case of A = 10 ppm.
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5.2. Tight constraints on the etalon
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Figure 5.6.: Graph of the etalon sensitivity S(f) as a function of f , for different values
for T , in the case of A = 50 ppm.

5.2.1. Etalon’s internal tilt

If the two high reflectivity surfaces are tilted against each other, then the etalon’s per-
formance degrades considerably. Ideally one would keep this angle to zero, but since this
is in practice not possible, an upper limit is needed to the angle we can tolerate without
compromising the whole experiment. To solve this problem, we employed a program for
simulation of the optical system written by Roland Schilling, called WaveProp.

This program can simulate a wide range of optical systems: here it is enough to say
that the program proved useful in simulating both the GEO600 interferometer (which
is 600 m long) and our small etalon (which is 10 µm long). More details about the
simulation program are in Appendix C. The only restriction we encountered was of a
technical nature: the program ran on a high performance computer under a strict time-
sharing policy. This means the simulations could take at most five minutes, and therefore
we had to face some trade-offs in the choice of the parameters in order to keep the
running time within the given limit. The Figures 5.7, 5.8 and 5.9 show the simulation
results for the etalon with increasing tilt between its surfaces. Given the high reflectivity,
even the smallest internal angle leads to vanishing transmitted power. The simulations
helped us to realize that the maximal acceptable internal angle should be much less
than θmax = 10−7 rad. This parameter is clearly beyond current coating technology.
Therefore we decided to interpret this requirement in the following way: the planarity of
the surfaces must be better than θmax only in a small region of the optics not bigger than
a few millimeters, preferably located at the center of the optical surface.
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5. Toward internal thermal noise measurement

WaveProp (v 0.94f), 04 May 2007, g1.ps
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Figure 5.7.: A laser beam of 1 W and waist w0 = 1 mm hits the etalon. The internal tilt
is in this case θ = 0. The upper left picture represents the incoming beam
and the lower left the transmitted beam. (The etalon is resonant with respect
to the incoming laser beam).

5.2.2. Etalon production: a challenge for thin film technology

The requirements on the etalon are very stringent. We state them here once more:� A 1 inch optical substrate has to be coated with a high reflectance coating, a spacer
and another high reflectance coating.� The spacer has to be resonant for the Nd:YAG wavelength and has to be 10λ long.
The resonant condition has to be nearly exactly matched since neither the etalon
nor the laser are tunable over the etalon’s free spectral range (which is of the order
of 15 THz).� The coatings should have a trasmissivity T ≈ 100 ppm.� The losses A should be much less than T : A≪ T .� The planarity should be better than 10−7 rad in a region extending a few millimeters
around the center of the optical surface.

These constraints which have to be matched independently and at the same time, put a
serious challenge on the coating companies. From a handful of companies in the whole
world with the capabilities to build such a device, some of them explicitly or implicitly
declined the order, leaving us with basically only one company willing to undertake the
task under best effort . This company was the Laser Zentrum Hannover (LZH).
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5.2. Tight constraints on the etalon

WaveProp (v 0.94f), 04 May 2007, k1.ps
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Figure 5.8.: A laser beam of 1 W and waist w0 = 1 mm hits the etalon. The internal tilt
is θ = 10−7 rad.
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Figure 5.9.: A laser beam of 1 W and waist w0 = 1 mm hits the etalon. The internal tilt
is θ = 10−6 rad.
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5. Toward internal thermal noise measurement

Figure 5.10.: The transmission profile as planned is shown in black. The blue region shows
the errors introduced by realistic thickness variations that occur during the
coating process.

5.3. Etalon performance

We got three deliveries of six etalons each, over a time period lasting more than two years.
Unfortunately, we were not able to put the etalons in resonance with the laser light, and
therefore we were not able to get the steep resonance signal required to measure the
internal thermal noise. Quantitatively the transmitted light power was at most 2% of the
incoming light power, this“maximum”happened at a significant etalon tilt with respect to
the incoming laser beam (approximatively 0.5 rad) and the maximum itself often showed
strong asymmetry with respect to the frequency.

This poor transmissivity did not permit us to estimate the etalons’ parameters like
transmissivity, losses, internal tilt and resonance frequency.

5.4. Additional etalon simulations

After the delivery of the etalons and the attempt to measure the internal thermal noise,
we had the opportunity to get some additional simulations from Dr. Hung Ly. These
simulations were made by using the software tools developed by LZH to actually produce
the etalons themselves. In Figure 5.10 we show the transmissivity of the etalon in a wide
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5.4. Additional etalon simulations

wavelength range. The black curve represents the planned transmissivity profile, showing
the sharp maximum at 1064 nm. The blue regions show the error that would result as
a consequence of coating thickness error of ±1.5%. This means these coating thickness
variations can displace the resonance far beyond the laser tunability range. It was also
possible to simulate the square of the field inside the etalon, which is proportional to the
power inside the etalon. This quantity is strongly dependent on interference effects which
in turn dictate the overall etalon’s performance. We also simulated the effect of small
thickness variations in the spacer and in one of the layers which is next to the spacer. The
results are shown in Figures 5.12 and 5.13. These simulations confirm the conclusions
we were already able to draw: the production of such a etalon can be done only at the
cutting edge of current thin film technology. Therefore the delivery of the etalons by LZH
under best effort appears now a fully reasonable and fair decision.

Figure 5.11.: The power intensity inside the etalon (apart from a proportionality coeffi-
cient). From right to left we clearly see the high reflectance coating as a
structure of λ/4 layers with alternating materials, the spacer which is 10λ
long, and another high reflectance coating.
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5. Toward internal thermal noise measurement

Figure 5.12.: The effect of a small thickness variation (by λ/4000) in a layer near the
spacer. The effect is clearly visible.

Figure 5.13.: A variation of the spacer (by λ/4000) has an even stronger effect with respect
to the same variation in the nearby layer.
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5.4. Additional etalon simulations

5.4.1. Temperature tuning

Finally we also studied the possibility to compensate small production imperfections by
changing the etalon’s temperature, thereby making it “longer”or “shorter”. In Figure 5.14
we see that a length variation of λ/4000 either in the spacer or in the first coating layer
leads to a drastic decrease of the transmissivity. Let l1 and l2 be the optical length of the
spacer and the first coating layer, respectively. Then is it easy to see that the relative
change of the optical length with respect to temperature is

1

li

dli
dT

= αi +
βi

ni
(5.4.1)

where:� the indexes 1 and 2 refer to the spacer and the first coating layer, respectively.� αi is the relative linear expansion coefficient.� ni is the index of refraction.� βi is the variation of the refractive index with respect to the temperature.

If we take the material parameters from Appendix A, we see that

αi ≪ βi (5.4.2)

so that
1

li

∆li
∆T

≈ βi

ni
. (5.4.3)

A temperature variation ∆T leads to a length variation ∆l1 in the spacer and ∆l2 in the
first coating layer which are

∆li =
βili
ni

∆T (5.4.4)

substituting our design parameters we observe that

|β1l1| ≈ |β2l2| (5.4.5)

and this means that we cannot “tune” the spacer without “detuning” the first coating
layer. From this analysis we learned that it would be a more sensible choice to build an
etalon whose spacer is made of Tantal pentoxide: in this case we would have

|β1l1| ≫ |β2l2| (5.4.6)

and the spacer would react much more than the first coating layer with respect to tem-
perature changes, thereby giving us the possibility to “tune” it.
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Figure 5.14.: The graph shows the variation of the etalon’s transmissivity at 1064 nm as
a function of small length variations in the spacer and in the first coating
layer. The data points are separated by λ/4000.
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6. Conclusion and outlook

In this work we showed our investigations into thermal noise as relevant for gravitational
wave research. We found that, in the lower frequency band, the pendulum suspension
needs to be better understood. Especially the cross coupling between the various degrees
of freedom needs to be quantitatively estimated and verified by experiment. Especially
interesting was the fact that changing the moments of inertia of the suspended masses
caused a clear lowering of the length noise, while efforts to reduce other noise sources did
not change the length noise at all. Our work in finding a model for such a complex system,
could be useful as a new starting point to raise the attention of the community toward
an approach which looks efficient and effective. In particular, the numerical instability
of Holzer’s method can be easily eliminated by using a custom numerical precision in the
calculations.

Regarding internal thermal noise we can say that our plan to provide a novel setup to
measure it was, and still is, a valuable one, since it aims to deliver data which provide ad-
ditional information with respect to other measurement techniques already available [20].

Since the required optical component for such an experiment (the etalon) can only be
produced at the highest production standard currently available, we faced here a common
difficulty in gravitational wave research, namely the difficulty in obtaining optical devices
which cannot be routinely produced by companies as standard goods. The result is often
that these components have to be accepted by the experimentalists as produced under
best effort , thereby leaving them with the risk of not being able to carry out the planned
experiment.

Nevertheless, we do hope that this work will help the scientific community toward a
better understanding of thermal noise, an issue of growing relevance for gravitational
wave research.
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A. Parameter list for internal thermal noise
calculations

We list the parameters for the thermal noise calculations carried out in Chapter 4. Firstly
we list the natural constants and other laser-related parameters.

Name Symbol Value Units

Boltzmann’s constant kB 1.38 · 10−23 JK−1

Reduced Planck’s constat ~ 1.05 · 10−34 Js

Speed of light (in vacuum) c 3 · 108 ms−1

Laser wavelenght λ 1064 · 10−9 m

Laser frequency f0 2.81 · 1014 Hz

Laser angular frequency ω0 1.77 · 1015 Hz

π ≈ 3.14 −

Secondly we list the etalon’s material parameters. The substrate material for the etalon
is fused silica. The coatings are made by a combination of two materials: fused silica and
Tantal pentoxide (Ta2O5).

The material parameters for fused silica are:

Name Symbol Value Units

Thermal expansion coefficient α 5.5 · 10−7 K−1

Density ρ 2200 kgm−3

Young modulus E 7.2 · 1010 Jm−3

Thermal conductivity k 1.4 J(mKs)−1

Specific heat capacity C 6.7 · 10−2 J(KgK)−1

Poisson ratio ν .17 −
Angle of loss φ 5 · 10−9 −

index of refraction n 1.45 −
β −1.5 · 10−5 K−1

The material parameters for Tantal pentoxide (Ta2O5) are:

Name Symbol Value Units

Thermal expansion coefficient α −4.4 · 10−5 K−1

Density ρ 8200 kgm−3

Young modulus E 1.4 · 1011 Jm−3

Poisson ratio ν .23 −
index of refraction n 2.1 −

β 1.21 · 10−4 K−1
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A. Parameter list for internal thermal noise calculations

Lastly, the remaining parameters are:

Name Symbol Value Units

Absorbed power W0 1.5 · 10−3 ≤W0 ≤ 1 W

Beam radius r0 10−3 ≤ r0 ≤ 6 · 10−2 m

Coating thickness d ≈ 6 · 10−6 m

Interferometer length L 4 · 103 m

The analytical expressions for the various thermal noise effects are

STE(ω) =
4
√

2(1 + ν)2

π

α2d2kBT
2

r20
√
κρCω

SPT (ω) = 2α2 ~ω0W0

(ρCπr20)
2ω2

STR(ω) =
β2λ2kBT

2

πr20
√
ρCκ

√
ω

SBN (ω) =
4kBT (1 − ν2)φ

ω
√

2πEr0
.

(A.1)

In the expression for the thermoelastic noise the parameter α needs to be modified ac-
cordingly to the theoretical analysis we carried out in Chapter 4. This means that

α = α1
d1

d1 + d2
+ α2

d2

d1 + d2

E2(1 − 2ν1)

E1(1 − 2ν2)
(A.2)

where the index 1 refers to fused silica and index 2 refers to Tantal pentoxide. Moreover,

di ≡
λ

4ni
(A.3)

where i = 1, 2. All other material parameters refer directly to fused silica. Regarding
thermorefractive noise we observe that

β =
n1n2(β1 + β2)

4(n2
1 − n2

2)
(A.4)

where the indices refer to the different materials. The other two noises can be computed
by direct substitution of the proper parameters, taking care to use those of the fused
silica material.

Finally, we show how these noises affect the sensitivity of a GW detector. To do this
we have to take the square root of the power spectral density of each noise and divide
by the length of the detector1 (is it easy to check that these quantities have the expected

1the numerical factors 2 or 4 take into account how many independent noise contributions have to be
added together. The numerical factor 4 corresponds to the four mirrors (two for each cavity) whose
noises have to be independently added together. However, in the case of thermoelastic noise one must
observe that only one the “end mirror” in each arm contributes to the noise since the other must have
a much lower reflectivity to let the laser light couple into the arm resonators. (This of course applies
to laser interferometers with arm cavities as LIGO).
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dimensions, namely (Hz)−1/2).

hTE =

√

2STE(ω)

L

hPT =

√

4SPT (ω)

L
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√

4STR(ω)
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hBN =

√
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L
.

(A.5)
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Figure A.1.: Limit to the sensitivity of the LIGO detectors due to thermal noise effects.
The parameters used are exactly as given by Braginsky [4]. The reproduc-
tion of this known result was also a check that the formulas and parameters
we used were correct, apart from a slight deviation in the case of the ther-
morefractive noise of unclear origin.
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B. Shot noise and electronic noise sources

We estimate here the various noises that will be introduced by the experimental setup in
order to be sure that these will not compromise the whole measurement. The experiment
is in principle simple: we send an intensity- and frequency-stabilized laser beam to the
etalon and measure the transmitted light by means of a photodetector (which includes a
transimpedance amplifier) and a spectrum analyzer. Since the etalon’s transmitted power
is a non-linear function of the frequency, the working point has to be chosen to maximize
the sensitivity, or, other words, to maximize the conversion factor from Hz to Volt. The
detection of the signal itself deserves some further discussion, since we need to keep two
noise sources at a level such that they do not spoil the whole detection scheme. These
noise sources are the shot noise (of the laser beam) and the electronic noise.

B.1. Shot noise

Shot noise affects virtually every measurement involving lasers. The physical mechanism
for shot noise lies in the quantum nature of light. This means a measurement of light
amounts to a “counting process”, and this counting process carries a fundamental noise
with it. The relevant equation is [21]

∆I =
√

2eI0 (B.1)

where e is the electron charge, I0 is the photocurrent and ∆I the linear spectral density
of I0.

We see that shot noise affects the photocurrent and the higher the photocurrent, the
lower the relative noise. The laser light hitting the photodiode has a power P0, and the
resulting photocurrent is given by

I0 = γP0 (B.2)

with a efficiency γ which is of the order of

γ ≈ 0.5 AW−1. (B.3)

In order not to damage the etalon, we set the laser power at P0 = 1 mW. A laser beam
of P0 = 1 mW has a shot noise of

∆I ≡ Ishot =
√

2eγP0 = 1.26 · 10−11 A√
Hz

(B.4)

This fundamental noise source set a sort of “border” between the photocurrent resulting
from the internal thermal noise, which must be bigger than Ishot, and the electronic noise
sources which, once converted to current noises, should be smaller than Ishot.
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B. Shot noise and electronic noise sources

B.2. Electronic noise sources

In order to convert the light into an electric signal some circuitry has to be employed. As
we said, the electronic noise should not overcome the shot noise, what we need is a shot
noise limited detection scheme. The detector is basically composed of a high efficiency
photodiode and a transimpedance amplifier, as shown in Figure B.1. If we consider

−
+

C1

PD

R

C2

Ubias

Uout

Figure B.1.: A transimpedance amplifier is used to convert a current signal (in this case
produced by the photodiode PD) into a voltage signal Uout that is better
suited for analysis by means of a spectrum analyzer.

the photodiode as a “black box” that cannot be tuned, we are left with the design of a
transimpedance amplifier, that is the device which converts the photocurrent produced
by the photodiode into a voltage signal. Our analysis will closely follow that developed
in [22]. The capacitor C1 is used to take into account the internal capacitance of the
photodiode itself (and in order to keep this unwanted effect at a minimum it is customary
to bias the photodiode at Ubias). The capacitor C2 ensures the stability of the circuit.
The resistor and the operational amplifier are noisy components and because of them, at
the the circuit’s output three additional noises appear, namely:� Thermal Johnson noise Uj =

√
4kBTR� Operational amplifier current noise In� Operational amplifier voltage noise Un

where kB is the Boltzmann’s constant, T is the temperature. The requirement is that
each of these noises should not exceed the the noise produced by the light itself, namely
the shot noise. Since the shot noise at the input of the operational amplifier is

∆I ≡ Ishot =
√

2eI0 (B.1)

this noise will appear at the output as

Ushot = RIshot. (B.2)

We get
Ushot > max(Uj, Ui, Un) (B.3)
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B.2. Electronic noise sources

where
Ui = RIn. (B.4)

In, Un are the input noise current density and the input noise voltage density respectively.
These two last parameters are specific to each operational amplifier and can be found in
the respective datasheets. Now we can perform a quantitative analysis of the noises
added by the transimpedance amplifier with respect to the shot noise level. We take
for the electronic circuit a feedback resistance of R = 1 kΩ and an OP-27 low noise
operational amplifier. Then

Ushot = RIshot = 1.26 · 10−8 V√
Hz

(B.5)

Uj = 4 · 10−9 V√
Hz

(B.6)

Un = 3 · 10−9 V√
Hz

(B.7)

Ui = 1 · 10−9 V√
Hz

. (B.8)

We can see that the condition expressed by the inequality (B.3) can be easily satisfied.
The analysis we carried out refers to signals that do not depend on time, this is usually

the first step in a design process, however, since the signals we want to measure are time
dependent, additional issues such as bandwidth and stability need to be studied. The
resistance R, for example, has a feedback effect on the operational amplifier, and this
feedback circuit has to be stable. From the producer’s datasheet and application notes
it is possible to find out the values of the capacitance C2 that is needed to ensure the
stability of the circuit. It should also be clear that this value depend also on R and in
our case it may be easily found that the required capacitance is of the order of the pF. In
such cases it can be omitted, taking into account that such tiny capacitances are always
present in a real circuit.
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C. Etalon simulations

The etalon was simulated by using a simulation program written by Roland Schilling.
The program requires the user to write a file resembling a Fortran 90 source code file,
describing the optical system to be simulated. Such a file is shown in Listing C.1: it is
easy to recover the parameters used in this example:� Laser beam waist: 1 mm.� Resonant cavity length: 10λ.� Transmissivity of each surface T = 100 ppm.� Losses at each surface A = 30 ppm.� Refraction index of the material between the two high reflectivity surfaces: n = 1.45.� Planarity: θ = 0 rad.

Two parameters are especially important for the computation:� Dimension of the grid: 27 × 27.� Number of round trips: 20000.

The dimension of the grid is simply the number of “pixels” in which the input beam is
decomposed. In principle, the finer the grid the better. In reality, this value was the
finest allowable, since a finer grid caused the computation time to exceed the limit set by
the time-sharing system.

Listing C.1: input file for the WaveProp program.
1 Program MICROCAV

2 !

3 ! Simulate a plane - plane miniature FP cavity .

4 ! Roland Schilling , 02 Nov 2006

5 ! Last modified : 03 May 2007

6 !

7 use rsutil ! utility package

8 use rsplot ! plot package

9 use waveprop ! wave -propagation package

10 !

11 integer , parameter :: nx=7 ! 2** nx grid points in x and y direction

12 !

13 character :: fileout *32

14 integer :: irt , nrt , ic (10)

15 real :: wi , lambda , dist , sog , rl , rt(1000) , pwi (1000)

16 type(field) :: psi_in ! initial field

17 type(field) :: psi_ci ! cavity input field

18 type(field) :: psi_ca ! cavity field
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C. Etalon simulations

19 type(field ) :: psi_ct ! transmitted field

20 type(surface ) :: mfp1 , mfp2 ! cavity mirrors

21 !

22 ! Set parameters :

23 nrt = 20000 ! number of round trips in cavity

24 sog = 10.0 ! size of the grid in one dimension [mm]

25 lambda = 1.064e-3 ! light wavelength [mm]

26 dist = 10* lambda ! length of cavity [mm]

27 wi = 1.0000 ! radius of initial beam [mm]

28 ri = 1.45

29 mfp1%n1 = ri

30 mfp2%n1 = ri

31 mfp1%t = sqrt (100.e-6) ! transmittance of cavity input mirror

32 mfp1%r = sqrt (1 -130. e-6) ! reflectance of cavity input mirror

33 mfp2%t = sqrt (100.e-6) ! transmittance of cavity end mirror

34 mfp2%r = sqrt (1 -130. e-6) ! reflectance of cavity end mirror

35 mfp2%ti= 0.e-7 ! tilt of cavity end mirror

36 !

37 fileout =arg (0)

38 u_norm =-gun () ! write output to file _and_ to terminal

39 if (u_norm /= 6) open(abs(u_norm ),file=trim(fileout )//’. log ’)

40 !

41 !call saft(timing =1)

42 call wp_init (nx,sog ,fftw=’m’,unit=’mm’, nthreads =4) ! initialize WaveProp

43 rl=pi*wi **2/ lambda

44 call msg (0,’\\ Rayleigh length = ’// trim(r2c(rl))//’ mm\\’)

45 call hg_mode (psi_in ,wi) ! generate initial field

46 call transmit (psi_in ,mfp1 ,’b’, psi_out =psi_ci )! transmit through input mirror

47 call set_up (psi_ca ,ri) ! set up and clear cavity field

48 ! added argument ri 04/05/2007

49 call set_up (psi_ct ) ! set up and clear transmitted field

50 call set_up (mfp1) ! set up cavity input mirror

51 call set_up (mfp2) ! set up cavity end mirror

52 np=0 ! number of points for plotting

53 is=1 ! print output every ’is’ round trips

54 do irt =1, nrt ! do nrt round trips

55 call reflect (psi_ca ,mfp1) ! reflect at near mirror

56 call interfere (psi_ci ,psi_ca ,psi_ca ,’c’,pw_c=pw)

57 if (mod(irt ,is) == 0) then

58 np=np+1

59 rt(np)= real(irt)

60 pwi (np)=pw

61 call msg (0,’ irt = ’// trim(i2c(irt ,’I6 ’))// &

62 ’ pwi =’// trim(r2c (pw ,’E4.3e+’)))

63 if (irt == 10) then

64 is=2

65 else if (irt == 30) then

66 is=5

67 else if (irt == 100) then

68 is =20

69 else if (irt == 300) then

70 is =50

71 else if (irt == 1000) then

72 is =200

73 else if (irt == 3000) then

74 is =500

75 end if

76 end if

77 call propagate (psi_ca ,dist) ! propagate to far mirror

78 if (irt == nrt) psi_ct =psi_ca ! transmitted field

79 call reflect (psi_ca ,mfp2) ! reflect at far mirror

80 call propagate (psi_ca ,dist) ! propagate to near mirror

81 end do
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82 call transmit (psi_ct ,mfp2) ! transmit through end mirror

83 call plot_3d (psi_in ,4,’ Input power ’,zoom =2.) ! plot input field

84 ! call plot_3d (psi_ct ,4,’ Transmitted power ’,zoom =2.) ! plot xmitted field

85 call transmit (psi_ca ,mfp1) ! transmit through input mirror

86 call reflect (psi_in ,mfp1 ,’b’) ! reflect at input mirror

87 call interfere (psi_in ,psi_ca ,psi_ca ,’d’) ! destructive interference

88 call plot_3d (psi_ca ,4,’ Reflected power ’,zoom =2.) ! plot return . field

89 ! call plot_3d (psi_ca ,4,’ Reflected power ’,cut =0.5, zoom =2.)

90 call plot_3d (psi_ct ,4,’ Transmitted power ’,zoom =2.) ! plot xmitted field

91 call plot_3d (psi_ct ,4,’ Transmitted power ’,cut =.5, zoom =2.) ! xmitted field

92 pwt=sum(abs (psi_ct %a)**2)

93 call msg (0,’\\ Transmitted power = ’// trim(r2c(pwt ))//’ W\\’)

94 !

95 call ps_init

96 call ps_frame (1,1.,1. e-5, real(nrt ),1.e4 ,60., xlog=1, ylog=1, clip =1)

97 call ps_grid (1,’10:*10’,’1e-6:*10’, lw=.2,ci =14)

98 call ps_grid (1,’ 2:*10’, lw=.2,ci=14)

99 call ps_grid (1,’ 5:*10’, lw=.2,ci=14)

100 call ps_axis (1,ax=’Xx ’,title=’Number of round trips ’,d_tl =10.)

101 call ps_axis (1,ax=’Yy ’,title=’Light power in FP cavity [W]’, &

102 d_tl =10., exp =0, d_tm =.5)

103 call ps_plot (1,np ,rt,pwi) ! power in FP cavity

104 !

105 !call sf_usage (’’)

106 call wp_exit

107 end

The number of the round trips is the number of round trips made by a single photon
inside the etalon. This is an important parameter, since the program is able to compute
the laser power inside the resonator. Since this quantity has to reach a steady state in
resonance, one has to set the number of round trips to a value such that the power inside
the resonator becomes constant with respect to the number of round trips. In Figure C.1
we show the power inside the resonator as a function of the computed round trips: it can
be seen that 20000 round trips should at least be computed in order to get meaningful
values. Since this parameter also heavily affects the computation time, this value was the
highest one we could use.
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C. Etalon simulations
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Figure C.1.: The power inside the resonator as a function of the number of computed
round trips. The power approaching a stationary state indicates the appro-
priate number of round trips to be computed to obtain meaningful results.
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[12] A. Vicerè. Introduction to the mechanical simulation of seismic isolation systems. In
M. Mazzoni R. Stanga M. Barone, G. Calamai and F. Vetrano, editors, Experimental
physics of Gravitational Waves, pages 349–378, 2000.

[13] E.C. Pestel and F.A.Leckie. Matrix methods in elastomechanics. McGraw-Hill, 1963.

[14] R.W.Hamming. Numerical Methods for Scientists and Engineers. Dover Publica-
tions, 1973.

89



Bibliography

[15] L. D. Landau and E. M. Lifschitz. Teoria dell’elasticità. Editori riuniti, 1979.
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